Demazure Modules, Chari–Venkatesh Modules and Fusion Products

Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
1. Verfasser: Ravinder, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146400
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Demazure Modules, Chari–Venkatesh Modules and Fusion Products / B. Ravinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146400
record_format dspace
spelling Ravinder, B.
2019-02-09T10:56:05Z
2019-02-09T10:56:05Z
2014
Demazure Modules, Chari–Venkatesh Modules and Fusion Products / B. Ravinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B67; 17B10
DOI:10.3842/SIGMA.2014.110
https://nasplib.isofts.kiev.ua/handle/123456789/146400
Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give explicit defining relations. As a consequence, for g simply laced, we show that the fusion product of a special family of Chari-Venkatesh modules is again a Chari-Venkatesh module. We also get a description of the truncated Weyl module associated to a multiple of θ.
The author thanks Vyjayanthi Chari, K.N. Raghavan and S. Viswanath for many helpful discussions and encouragement. Part of this work was done when the author was visiting the Centre de Recherche Mathematique (CRM), Montreal, Canada, during the thematic semester on New Directions in Lie Theory. The author acknowledges the hospitality and financial support extended to him by CRM. The author also thanks the anonymous referees for their valuable comments, due to which the paper is much improved. The author acknowledges support from CSIR under the SPM Fellowship scheme
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Demazure Modules, Chari–Venkatesh Modules and Fusion Products
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Demazure Modules, Chari–Venkatesh Modules and Fusion Products
spellingShingle Demazure Modules, Chari–Venkatesh Modules and Fusion Products
Ravinder, B.
title_short Demazure Modules, Chari–Venkatesh Modules and Fusion Products
title_full Demazure Modules, Chari–Venkatesh Modules and Fusion Products
title_fullStr Demazure Modules, Chari–Venkatesh Modules and Fusion Products
title_full_unstemmed Demazure Modules, Chari–Venkatesh Modules and Fusion Products
title_sort demazure modules, chari–venkatesh modules and fusion products
author Ravinder, B.
author_facet Ravinder, B.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let g be a finite-dimensional complex simple Lie algebra with highest root θ. Given two non-negative integers m, n, we prove that the fusion product of m copies of the level one Demazure module D(1,θ) with n copies of the adjoint representation ev₀V(θ) is independent of the parameters and we give explicit defining relations. As a consequence, for g simply laced, we show that the fusion product of a special family of Chari-Venkatesh modules is again a Chari-Venkatesh module. We also get a description of the truncated Weyl module associated to a multiple of θ.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146400
citation_txt Demazure Modules, Chari–Venkatesh Modules and Fusion Products / B. Ravinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT ravinderb demazuremodulescharivenkateshmodulesandfusionproducts
first_indexed 2025-12-07T19:52:10Z
last_indexed 2025-12-07T19:52:10Z
_version_ 1850880431798353921