Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One

We present a method to obtain infinitely many examples of pairs (W,D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G,K) of rank one...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автори: Maarten van Pruijssen, Román, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146404
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One / Maarten van Pruijssen , P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 40 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146404
record_format dspace
spelling Maarten van Pruijssen
Román, P.
2019-02-09T11:22:55Z
2019-02-09T11:22:55Z
2014
Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One / Maarten van Pruijssen , P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 40 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22E46; 33C47
DOI: http://dx.doi.org/10.3842/SIGMA.2014.113
https://nasplib.isofts.kiev.ua/handle/123456789/146404
We present a method to obtain infinitely many examples of pairs (W,D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G,K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ₀. We analyze the base change and derive several properties. The most important one is that Ψ₀ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ₀. We provide an algorithm to calculate Ψ₀ explicitly. For the pair (USp(2n),USp(2n−2)×USp(2)) we have implemented the algorithm in GAP so that individual pairs (W,D) can be calculated explicitly. Finally we classify the Gelfand pairs (G,K) and the K-representations that yield pairs (W,D) of size 2×2 and we provide explicit expressions for most of these cases.
The research for this paper was partly conducted when the first author visited the University of Cordoba in August and September 2012. We would like to thank the Mathematics Departments of the Universities of Nijmegen and Cordoba for their generous supports that made this visit possible. Finally we would like to thank to the anonymous referees, whose comments and suggestions have helped us to improve the paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
spellingShingle Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
Maarten van Pruijssen
Román, P.
title_short Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_full Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_fullStr Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_full_unstemmed Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
title_sort matrix valued classical pairs related to compact gelfand pairs of rank one
author Maarten van Pruijssen
Román, P.
author_facet Maarten van Pruijssen
Román, P.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present a method to obtain infinitely many examples of pairs (W,D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G,K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ₀. We analyze the base change and derive several properties. The most important one is that Ψ₀ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ₀. We provide an algorithm to calculate Ψ₀ explicitly. For the pair (USp(2n),USp(2n−2)×USp(2)) we have implemented the algorithm in GAP so that individual pairs (W,D) can be calculated explicitly. Finally we classify the Gelfand pairs (G,K) and the K-representations that yield pairs (W,D) of size 2×2 and we provide explicit expressions for most of these cases.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146404
citation_txt Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One / Maarten van Pruijssen , P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 40 назв. — англ.
work_keys_str_mv AT maartenvanpruijssen matrixvaluedclassicalpairsrelatedtocompactgelfandpairsofrankone
AT romanp matrixvaluedclassicalpairsrelatedtocompactgelfandpairsofrankone
first_indexed 2025-12-07T15:39:33Z
last_indexed 2025-12-07T15:39:33Z
_version_ 1850864538624196608