On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account

In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2006
1. Verfasser: Zhislin, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146421
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146421
record_format dspace
spelling Zhislin, G.
2019-02-09T16:37:10Z
2019-02-09T16:37:10Z
2006
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 35P20; 35Q75; 46N50; 47N50; 70H05; 81Q10
https://nasplib.isofts.kiev.ua/handle/123456789/146421
In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α and for some cases we establish new properties of the lower bound of this spectrum, which are useful for study of the discrete spectrum.
This investigation is supported by RFBR grant 05-01-00299.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
spellingShingle On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
Zhislin, G.
title_short On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_full On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_fullStr On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_full_unstemmed On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
title_sort on the essential spectrum of many-particle pseudorelativistic hamiltonians with permutational symmetry account
author Zhislin, G.
author_facet Zhislin, G.
publishDate 2006
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α and for some cases we establish new properties of the lower bound of this spectrum, which are useful for study of the discrete spectrum.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146421
citation_txt On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT zhisling ontheessentialspectrumofmanyparticlepseudorelativistichamiltonianswithpermutationalsymmetryaccount
first_indexed 2025-12-07T16:52:32Z
last_indexed 2025-12-07T16:52:32Z
_version_ 1850869130209525760