On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account
In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2006 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2006
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146421 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146421 |
|---|---|
| record_format |
dspace |
| spelling |
Zhislin, G. 2019-02-09T16:37:10Z 2019-02-09T16:37:10Z 2006 On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35P20; 35Q75; 46N50; 47N50; 70H05; 81Q10 https://nasplib.isofts.kiev.ua/handle/123456789/146421 In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α and for some cases we establish new properties of the lower bound of this spectrum, which are useful for study of the discrete spectrum. This investigation is supported by RFBR grant 05-01-00299. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account |
| spellingShingle |
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account Zhislin, G. |
| title_short |
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account |
| title_full |
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account |
| title_fullStr |
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account |
| title_full_unstemmed |
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account |
| title_sort |
on the essential spectrum of many-particle pseudorelativistic hamiltonians with permutational symmetry account |
| author |
Zhislin, G. |
| author_facet |
Zhislin, G. |
| publishDate |
2006 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this paper we formulate our results on the essential spectrum of many-particle pseudorelativistic Hamiltonians without magnetic and external potential fields in the spaces of functions, having arbitrary type α of the permutational symmetry. We discover location of the essential spectrum for all α and for some cases we establish new properties of the lower bound of this spectrum, which are useful for study of the discrete spectrum.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146421 |
| citation_txt |
On the Essential Spectrum of Many-Particle Pseudorelativistic Hamiltonians with Permutational Symmetry Account / G. Zhislin // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT zhisling ontheessentialspectrumofmanyparticlepseudorelativistichamiltonianswithpermutationalsymmetryaccount |
| first_indexed |
2025-12-07T16:52:32Z |
| last_indexed |
2025-12-07T16:52:32Z |
| _version_ |
1850869130209525760 |