On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations

We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2006
1. Verfasser: Güngör, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2006
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146434
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146434
record_format dspace
spelling Güngör, F.
2019-02-09T17:00:49Z
2019-02-09T17:00:49Z
2006
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 35A30; 35Q53; 35Q55; 35Q58
https://nasplib.isofts.kiev.ua/handle/123456789/146434
We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable.
The author is grateful to the referees for useful comments and acknowledges the financial support from Istanbul Technical University (ITU).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
spellingShingle On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
Güngör, F.
title_short On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_full On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_fullStr On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_full_unstemmed On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
title_sort on the virasoro structure of symmetry algebras of nonlinear partial differential equations
author Güngör, F.
author_facet Güngör, F.
publishDate 2006
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146434
citation_txt On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT gungorf onthevirasorostructureofsymmetryalgebrasofnonlinearpartialdifferentialequations
first_indexed 2025-12-07T18:51:16Z
last_indexed 2025-12-07T18:51:16Z
_version_ 1850876600207278081