On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations
We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a sys...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2006 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2006
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146434 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146434 |
|---|---|
| record_format |
dspace |
| spelling |
Güngör, F. 2019-02-09T17:00:49Z 2019-02-09T17:00:49Z 2006 On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A30; 35Q53; 35Q55; 35Q58 https://nasplib.isofts.kiev.ua/handle/123456789/146434 We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable. The author is grateful to the referees for useful comments and acknowledges the financial support from Istanbul Technical University (ITU). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
| spellingShingle |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations Güngör, F. |
| title_short |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
| title_full |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
| title_fullStr |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
| title_full_unstemmed |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations |
| title_sort |
on the virasoro structure of symmetry algebras of nonlinear partial differential equations |
| author |
Güngör, F. |
| author_facet |
Güngör, F. |
| publishDate |
2006 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We discuss Lie algebras of the Lie symmetry groups of two generically non-integrable equations in one temporal and two space dimensions arising in different contexts. The first is a generalization of the KP equation and contains 9 arbitrary functions of one and two arguments. The second one is a system of PDEs that depend on some physical parameters. We require that these PDEs are invariant under a Kac-Moody-Virasoro algebra. This leads to several limitations on the coefficients (either functions or parameters) under which equations are prime candidates for being integrable.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146434 |
| citation_txt |
On the Virasoro Structure of Symmetry Algebras of Nonlinear Partial Differential Equations / F. Güngör // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 16 назв. — англ. |
| work_keys_str_mv |
AT gungorf onthevirasorostructureofsymmetryalgebrasofnonlinearpartialdifferentialequations |
| first_indexed |
2025-12-07T18:51:16Z |
| last_indexed |
2025-12-07T18:51:16Z |
| _version_ |
1850876600207278081 |