On Classical r-Matrix for the Kowalevski Gyrostat on so(4)

We present the trigonometric Lax matrix and classical r-matrix for the Kowalevski gyrostat on so(4) algebra by using the auxiliary matrix algebras so(3,2) or sp(4).

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2006
Автори: Komarov, I.V., Tsiganov, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146437
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Classical r-Matrix for the Kowalevski Gyrostat on so(4) / I.V. Komarov, A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146437
record_format dspace
spelling Komarov, I.V.
Tsiganov, A.V.
2019-02-09T17:03:19Z
2019-02-09T17:03:19Z
2006
On Classical r-Matrix for the Kowalevski Gyrostat on so(4) / I.V. Komarov, A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37J35; 70E40; 70G65
https://nasplib.isofts.kiev.ua/handle/123456789/146437
We present the trigonometric Lax matrix and classical r-matrix for the Kowalevski gyrostat on so(4) algebra by using the auxiliary matrix algebras so(3,2) or sp(4).
The authors thank E. Sklyanin and N. Reshetikhin for very useful conversations on the subject of this paper. I.V.K. wishes to thank the London Mathematical Society for support his visit to England and V.B. Kuznetsov for hospitality at the University of Leeds.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
spellingShingle On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
Komarov, I.V.
Tsiganov, A.V.
title_short On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
title_full On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
title_fullStr On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
title_full_unstemmed On Classical r-Matrix for the Kowalevski Gyrostat on so(4)
title_sort on classical r-matrix for the kowalevski gyrostat on so(4)
author Komarov, I.V.
Tsiganov, A.V.
author_facet Komarov, I.V.
Tsiganov, A.V.
publishDate 2006
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present the trigonometric Lax matrix and classical r-matrix for the Kowalevski gyrostat on so(4) algebra by using the auxiliary matrix algebras so(3,2) or sp(4).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146437
citation_txt On Classical r-Matrix for the Kowalevski Gyrostat on so(4) / I.V. Komarov, A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT komaroviv onclassicalrmatrixforthekowalevskigyrostatonso4
AT tsiganovav onclassicalrmatrixforthekowalevskigyrostatonso4
first_indexed 2025-12-07T17:00:55Z
last_indexed 2025-12-07T17:00:55Z
_version_ 1850869658095190016