Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature
A family of classical superintegrable Hamiltonians, depending on an arbitrary radial function, which are defined on the 3D spherical, Euclidean and hyperbolic spaces as well as on the (2+1)D anti-de Sitter, Minkowskian and de Sitter spacetimes is constructed. Such systems admit three integrals of th...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2006 |
| Hauptverfasser: | Herranz, F.J., Ballesteros, Á |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2006
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146443 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Superintegrability on Three-Dimensional Riemannian and Relativistic Spaces of Constant Curvature / F.J. Herranz, Á. Ballesteros // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 43 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature
von: Ragnisco, O., et al.
Veröffentlicht: (2007) -
Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
von: Ballesteros, A., et al.
Veröffentlicht: (2011) -
On the Extended-Hamiltonian Structure of Certain Superintegrable Systems on Constant-Curvature Riemannian and Pseudo-Riemannian Surfaces
von: Chanu, Claudia Maria, et al.
Veröffentlicht: (2020) -
Relativistic mechanics of constant curvature
von: Ya. Matsiuk
Veröffentlicht: (2018) -
Fundamental Solutions and Gegenbauer Expansions of Helmholtz Operators in Riemannian Spaces of Constant Curvature
von: Cohl, H.S., et al.
Veröffentlicht: (2018)