A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn

In a recent work, we proposed the coupled Painlevé VI system with A2n+1⁽¹⁾-symmetry, which is a higher order generalization of the sixth Painlevé equation (PVI). In this article, we present its particular solution expressed in terms of the hypergeometric function n+1Fn. We also discuss a degeneratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2010
1. Verfasser: Suzuki, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146500
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn / T. Suzuki // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146500
record_format dspace
spelling Suzuki, T.
2019-02-09T19:27:04Z
2019-02-09T19:27:04Z
2010
A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn / T. Suzuki // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 6 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B80; 33C20; 34M55
DOI:10.3842/SIGMA.2010.078
https://nasplib.isofts.kiev.ua/handle/123456789/146500
In a recent work, we proposed the coupled Painlevé VI system with A2n+1⁽¹⁾-symmetry, which is a higher order generalization of the sixth Painlevé equation (PVI). In this article, we present its particular solution expressed in terms of the hypergeometric function n+1Fn. We also discuss a degeneration structure of the Painlevé system derived from the confluence of n+1Fn.
This paper is a contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”. The full collection is available at http://www.emis.de/journals/SIGMA/OPSF.html. The author would like to express his gratitude to Mr. Masaomi Miyamoto of Kobe University for fruitful discussion. The author is also grateful to Professors Masatoshi Noumi, Hidetaka Sakai, Teruhisa Tsuda and Yasuhiko Yamada for helpful comments and advices.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
spellingShingle A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
Suzuki, T.
title_short A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_full A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_fullStr A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_full_unstemmed A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn
title_sort particular solution of a painlevé system in terms of the hypergeometric function n+1fn
author Suzuki, T.
author_facet Suzuki, T.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In a recent work, we proposed the coupled Painlevé VI system with A2n+1⁽¹⁾-symmetry, which is a higher order generalization of the sixth Painlevé equation (PVI). In this article, we present its particular solution expressed in terms of the hypergeometric function n+1Fn. We also discuss a degeneration structure of the Painlevé system derived from the confluence of n+1Fn.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146500
citation_txt A Particular Solution of a Painlevé System in Terms of the Hypergeometric Function n+1Fn / T. Suzuki // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT suzukit aparticularsolutionofapainlevesystemintermsofthehypergeometricfunctionn1fn
AT suzukit particularsolutionofapainlevesystemintermsofthehypergeometricfunctionn1fn
first_indexed 2025-12-07T20:48:53Z
last_indexed 2025-12-07T20:48:53Z
_version_ 1850884000407617536