Balanced Metrics and Noncommutative Kähler Geometry
In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2010 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146504 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanced metrics appear naturally as a result of requiring the vacuum energy to be the constant function on the moduli space of semiclassical vacua. In the classical limit, these metrics become Kähler-Einstein (when M admits such metrics). Finally, we sketch several applications of this formalism, such as explicit constructions of special Lagrangian submanifolds in compact Calabi-Yau manifolds.
|
|---|---|
| ISSN: | 1815-0659 |