Balanced Metrics and Noncommutative Kähler Geometry
In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146504 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146504 |
|---|---|
| record_format |
dspace |
| fulltext |
|
| spelling |
nasplib_isofts_kiev_ua-123456789-1465042025-02-09T13:12:20Z Balanced Metrics and Noncommutative Kähler Geometry Lukic, S. In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanced metrics appear naturally as a result of requiring the vacuum energy to be the constant function on the moduli space of semiclassical vacua. In the classical limit, these metrics become Kähler-Einstein (when M admits such metrics). Finally, we sketch several applications of this formalism, such as explicit constructions of special Lagrangian submanifolds in compact Calabi-Yau manifolds. This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. It is a pleasure to thank T. Banks, E. Diaconescu, M. Douglas, R. Karp, S. Klevtsov, and specially the author’s advisor G. Moore, for valuable discussions. We would like to thank as well G. Moore and G. Torroba for their comments on the manuscript, and J. Nannarone for kind encouragement and support. This work was supported by DOE grant DE-FG02-96ER40949. 2010 Article Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14J32; 32Q15; 32Q20; 53C25; 53D50 doi:10.3842/SIGMA.2010.069 https://nasplib.isofts.kiev.ua/handle/123456789/146504 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanced metrics appear naturally as a result of requiring the vacuum energy to be the constant function on the moduli space of semiclassical vacua. In the classical limit, these metrics become Kähler-Einstein (when M admits such metrics). Finally, we sketch several applications of this formalism, such as explicit constructions of special Lagrangian submanifolds in compact Calabi-Yau manifolds. |
| format |
Article |
| author |
Lukic, S. |
| spellingShingle |
Lukic, S. Balanced Metrics and Noncommutative Kähler Geometry Symmetry, Integrability and Geometry: Methods and Applications |
| author_facet |
Lukic, S. |
| author_sort |
Lukic, S. |
| title |
Balanced Metrics and Noncommutative Kähler Geometry |
| title_short |
Balanced Metrics and Noncommutative Kähler Geometry |
| title_full |
Balanced Metrics and Noncommutative Kähler Geometry |
| title_fullStr |
Balanced Metrics and Noncommutative Kähler Geometry |
| title_full_unstemmed |
Balanced Metrics and Noncommutative Kähler Geometry |
| title_sort |
balanced metrics and noncommutative kähler geometry |
| publisher |
Інститут математики НАН України |
| publishDate |
2010 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146504 |
| citation_txt |
Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. |
| series |
Symmetry, Integrability and Geometry: Methods and Applications |
| work_keys_str_mv |
AT lukics balancedmetricsandnoncommutativekahlergeometry |
| first_indexed |
2025-11-26T01:42:57Z |
| last_indexed |
2025-11-26T01:42:57Z |
| _version_ |
1849815337967550464 |