Balanced Metrics and Noncommutative Kähler Geometry

In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автор: Lukic, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146504
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146504
record_format dspace
fulltext
spelling nasplib_isofts_kiev_ua-123456789-1465042025-02-09T13:12:20Z Balanced Metrics and Noncommutative Kähler Geometry Lukic, S. In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanced metrics appear naturally as a result of requiring the vacuum energy to be the constant function on the moduli space of semiclassical vacua. In the classical limit, these metrics become Kähler-Einstein (when M admits such metrics). Finally, we sketch several applications of this formalism, such as explicit constructions of special Lagrangian submanifolds in compact Calabi-Yau manifolds. This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. It is a pleasure to thank T. Banks, E. Diaconescu, M. Douglas, R. Karp, S. Klevtsov, and specially the author’s advisor G. Moore, for valuable discussions. We would like to thank as well G. Moore and G. Torroba for their comments on the manuscript, and J. Nannarone for kind encouragement and support. This work was supported by DOE grant DE-FG02-96ER40949. 2010 Article Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14J32; 32Q15; 32Q20; 53C25; 53D50 doi:10.3842/SIGMA.2010.069 https://nasplib.isofts.kiev.ua/handle/123456789/146504 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions C∞(M) on a Kähler manifold M. In this setup one interprets M as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanced metrics appear naturally as a result of requiring the vacuum energy to be the constant function on the moduli space of semiclassical vacua. In the classical limit, these metrics become Kähler-Einstein (when M admits such metrics). Finally, we sketch several applications of this formalism, such as explicit constructions of special Lagrangian submanifolds in compact Calabi-Yau manifolds.
format Article
author Lukic, S.
spellingShingle Lukic, S.
Balanced Metrics and Noncommutative Kähler Geometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Lukic, S.
author_sort Lukic, S.
title Balanced Metrics and Noncommutative Kähler Geometry
title_short Balanced Metrics and Noncommutative Kähler Geometry
title_full Balanced Metrics and Noncommutative Kähler Geometry
title_fullStr Balanced Metrics and Noncommutative Kähler Geometry
title_full_unstemmed Balanced Metrics and Noncommutative Kähler Geometry
title_sort balanced metrics and noncommutative kähler geometry
publisher Інститут математики НАН України
publishDate 2010
url https://nasplib.isofts.kiev.ua/handle/123456789/146504
citation_txt Balanced Metrics and Noncommutative Kähler Geometry / S. Lukic // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT lukics balancedmetricsandnoncommutativekahlergeometry
first_indexed 2025-11-26T01:42:57Z
last_indexed 2025-11-26T01:42:57Z
_version_ 1849815337967550464