On a Family of 2-Variable Orthogonal Krawtchouk Polynomials

We give a hypergeometric proof involving a family of 2-variable Krawtchouk polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089, 18 pages] as a limit of the 9−j symbols of quantum angular momentum theory, and shown to be eigenfunctions of the transition probability kernel...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2010
Main Authors: Grünbaum, F.A., Rahman, M.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146521
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On a Family of 2-Variable Orthogonal Krawtchouk Polynomials / F.A. Grünbaum, M. Rahman // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We give a hypergeometric proof involving a family of 2-variable Krawtchouk polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089, 18 pages] as a limit of the 9−j symbols of quantum angular momentum theory, and shown to be eigenfunctions of the transition probability kernel corresponding to a ''poker dice'' type probability model. The proof in this paper derives and makes use of the necessary and sufficient conditions of orthogonality in establishing orthogonality as well as indicating their geometrical significance. We also derive a 5-term recurrence relation satisfied by these polynomials.
ISSN:1815-0659