Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima's quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. Th...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2010 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146522 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations / D. Yamakawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima's quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these relate to simple reflections in the Weyl group of some symmetrizable, possibly non-symmetric Kac-Moody algebra. The moduli spaces of meromorphic connections on the rank 2 trivial bundle over the Riemann sphere are described as our manifolds. In our picture, the list of Dynkin diagrams for Painlevé equations is slightly different from (but equivalent to) Okamoto's
|
|---|---|
| ISSN: | 1815-0659 |