Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations

To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima's quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2010
1. Verfasser: Yamakawa, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146522
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations / D. Yamakawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146522
record_format dspace
spelling Yamakawa, D.
2019-02-09T19:50:03Z
2019-02-09T19:50:03Z
2010
Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations / D. Yamakawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53D30; 16G20; 20F55; 34M55
DOI:10.3842/SIGMA.2010.087
https://nasplib.isofts.kiev.ua/handle/123456789/146522
To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima's quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these relate to simple reflections in the Weyl group of some symmetrizable, possibly non-symmetric Kac-Moody algebra. The moduli spaces of meromorphic connections on the rank 2 trivial bundle over the Riemann sphere are described as our manifolds. In our picture, the list of Dynkin diagrams for Painlevé equations is slightly different from (but equivalent to) Okamoto's
I am grateful to Philip Boalch for stimulating conversations, and to Professor Hiraku Nakajima for valuable comments. This work was supported by the grants ANR-08-BLAN-0317-01 of the Agence nationale de la recherche and JSPS Grant-in-Aid for Scientific Research (S 19104002).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
spellingShingle Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
Yamakawa, D.
title_short Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
title_full Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
title_fullStr Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
title_full_unstemmed Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations
title_sort quiver varieties with multiplicities, weyl groups of non-symmetric kac-moody algebras, and painlevé equations
author Yamakawa, D.
author_facet Yamakawa, D.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description To a finite quiver equipped with a positive integer on each of its vertices, we associate a holomorphic symplectic manifold having some parameters. This coincides with Nakajima's quiver variety with no stability parameter/framing if the integers attached on the vertices are all equal to one. The construction of reflection functors for quiver varieties are generalized to our case, in which these relate to simple reflections in the Weyl group of some symmetrizable, possibly non-symmetric Kac-Moody algebra. The moduli spaces of meromorphic connections on the rank 2 trivial bundle over the Riemann sphere are described as our manifolds. In our picture, the list of Dynkin diagrams for Painlevé equations is slightly different from (but equivalent to) Okamoto's
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146522
citation_txt Quiver Varieties with Multiplicities, Weyl Groups of Non-Symmetric Kac-Moody Algebras, and Painlevé Equations / D. Yamakawa // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT yamakawad quivervarietieswithmultiplicitiesweylgroupsofnonsymmetrickacmoodyalgebrasandpainleveequations
first_indexed 2025-12-07T16:19:42Z
last_indexed 2025-12-07T16:19:42Z
_version_ 1850867064634343424