Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations

We consider the double affine Hecke algebra H=H(k₀,k₁,k₀v,k₁v;q) associated with the root system (C₁v,C₁). We display three elements x, y, z in H that satisfy essentially the Z₃-symmetric Askey-Wilson relations. We obtain the relations as follows. We work with an algebra Ĥ that is more general than...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2010
Автори: Ito, T., Terwilliger, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146531
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations / T. Ito, P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146531
record_format dspace
spelling Ito, T.
Terwilliger, P.
2019-02-09T20:27:33Z
2019-02-09T20:27:33Z
2010
Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations / T. Ito, P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D80; 33D45
DOI:10.3842/SIGMA.2010.065
https://nasplib.isofts.kiev.ua/handle/123456789/146531
We consider the double affine Hecke algebra H=H(k₀,k₁,k₀v,k₁v;q) associated with the root system (C₁v,C₁). We display three elements x, y, z in H that satisfy essentially the Z₃-symmetric Askey-Wilson relations. We obtain the relations as follows. We work with an algebra Ĥ that is more general than H, called the universal double affine Hecke algebra of type (C₁v,C₁). An advantage of Ĥ over H is that it is parameter free and has a larger automorphism group. We give a surjective algebra homomorphism Ĥ → H. We define some elements x, y, z in Ĥ that get mapped to their counterparts in H by this homomorphism. We give an action of Artin's braid group B₃ on Ĥ that acts nicely on the elements x, y, z; one generator sends x → y → z → x and another generator interchanges x, y. Using the B₃ action we show that the elements x, y, z in Ĥ satisfy three equations that resemble the Z₃-symmetric Askey-Wilson relations. Applying the homomorphism Ĥ → H we find that the elements x, y, z in H satisfy similar relations.
We thank Alexei Zhedanov for mentioning to us around 2005 that AW(3) has the presentation (1)–(3); this knowledge motivated us to search for a result like Theorem 2.4. We also thank Zhedanov for several illuminating conversations on DAHA during his visit to Kanazawa in December 2007. We thank the two referees for clarifying how the present paper is related to the previous literature. The second author thanks Tom Koornwinder, Alexei Oblomkov, and Xiaoguang Ma for useful recent conversations on the general subject DAHA.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
spellingShingle Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
Ito, T.
Terwilliger, P.
title_short Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
title_full Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
title_fullStr Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
title_full_unstemmed Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations
title_sort double affine hecke algebras of rank 1 and the z₃-symmetric askey-wilson relations
author Ito, T.
Terwilliger, P.
author_facet Ito, T.
Terwilliger, P.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the double affine Hecke algebra H=H(k₀,k₁,k₀v,k₁v;q) associated with the root system (C₁v,C₁). We display three elements x, y, z in H that satisfy essentially the Z₃-symmetric Askey-Wilson relations. We obtain the relations as follows. We work with an algebra Ĥ that is more general than H, called the universal double affine Hecke algebra of type (C₁v,C₁). An advantage of Ĥ over H is that it is parameter free and has a larger automorphism group. We give a surjective algebra homomorphism Ĥ → H. We define some elements x, y, z in Ĥ that get mapped to their counterparts in H by this homomorphism. We give an action of Artin's braid group B₃ on Ĥ that acts nicely on the elements x, y, z; one generator sends x → y → z → x and another generator interchanges x, y. Using the B₃ action we show that the elements x, y, z in Ĥ satisfy three equations that resemble the Z₃-symmetric Askey-Wilson relations. Applying the homomorphism Ĥ → H we find that the elements x, y, z in H satisfy similar relations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146531
citation_txt Double Affine Hecke Algebras of Rank 1 and the Z₃-Symmetric Askey-Wilson Relations / T. Ito, P. Terwilliger // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT itot doubleaffineheckealgebrasofrank1andthez3symmetricaskeywilsonrelations
AT terwilligerp doubleaffineheckealgebrasofrank1andthez3symmetricaskeywilsonrelations
first_indexed 2025-12-07T20:38:50Z
last_indexed 2025-12-07T20:38:50Z
_version_ 1850883367756627968