Twist Quantization of String and Hopf Algebraic Symmetry

We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module a...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2010
Main Authors: Asakawa, T., Watamura, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146532
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Twist Quantization of String and Hopf Algebraic Symmetry / T. Asakawa, S. Watamura // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146532
record_format dspace
spelling Asakawa, T.
Watamura, S.
2019-02-09T20:28:37Z
2019-02-09T20:28:37Z
2010
Twist Quantization of String and Hopf Algebraic Symmetry / T. Asakawa, S. Watamura // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 83E30; 81T75; 53D55
DOI:10.3842/SIGMA.2010.068
https://nasplib.isofts.kiev.ua/handle/123456789/146532
We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module algebra structure, and apply it to several examples, including finite twisted diffeomorphism and extra treatment for zero modes.
This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. The authors would like to thank M. Mori for collaboration and useful discussions. We also thank to Dr. U. Carow-Watamura for useful comments and discussions. This work is supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, No. 19540257.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Twist Quantization of String and Hopf Algebraic Symmetry
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Twist Quantization of String and Hopf Algebraic Symmetry
spellingShingle Twist Quantization of String and Hopf Algebraic Symmetry
Asakawa, T.
Watamura, S.
title_short Twist Quantization of String and Hopf Algebraic Symmetry
title_full Twist Quantization of String and Hopf Algebraic Symmetry
title_fullStr Twist Quantization of String and Hopf Algebraic Symmetry
title_full_unstemmed Twist Quantization of String and Hopf Algebraic Symmetry
title_sort twist quantization of string and hopf algebraic symmetry
author Asakawa, T.
Watamura, S.
author_facet Asakawa, T.
Watamura, S.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module algebra structure, and apply it to several examples, including finite twisted diffeomorphism and extra treatment for zero modes.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146532
citation_txt Twist Quantization of String and Hopf Algebraic Symmetry / T. Asakawa, S. Watamura // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT asakawat twistquantizationofstringandhopfalgebraicsymmetry
AT watamuras twistquantizationofstringandhopfalgebraicsymmetry
first_indexed 2025-12-07T18:57:56Z
last_indexed 2025-12-07T18:57:56Z
_version_ 1850877020029845504