Twist Quantization of String and Hopf Algebraic Symmetry
We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module a...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2010 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146532 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Twist Quantization of String and Hopf Algebraic Symmetry / T. Asakawa, S. Watamura // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146532 |
|---|---|
| record_format |
dspace |
| spelling |
Asakawa, T. Watamura, S. 2019-02-09T20:28:37Z 2019-02-09T20:28:37Z 2010 Twist Quantization of String and Hopf Algebraic Symmetry / T. Asakawa, S. Watamura // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 83E30; 81T75; 53D55 DOI:10.3842/SIGMA.2010.068 https://nasplib.isofts.kiev.ua/handle/123456789/146532 We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module algebra structure, and apply it to several examples, including finite twisted diffeomorphism and extra treatment for zero modes. This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. The authors would like to thank M. Mori for collaboration and useful discussions. We also thank to Dr. U. Carow-Watamura for useful comments and discussions. This work is supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, No. 19540257. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Twist Quantization of String and Hopf Algebraic Symmetry Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Twist Quantization of String and Hopf Algebraic Symmetry |
| spellingShingle |
Twist Quantization of String and Hopf Algebraic Symmetry Asakawa, T. Watamura, S. |
| title_short |
Twist Quantization of String and Hopf Algebraic Symmetry |
| title_full |
Twist Quantization of String and Hopf Algebraic Symmetry |
| title_fullStr |
Twist Quantization of String and Hopf Algebraic Symmetry |
| title_full_unstemmed |
Twist Quantization of String and Hopf Algebraic Symmetry |
| title_sort |
twist quantization of string and hopf algebraic symmetry |
| author |
Asakawa, T. Watamura, S. |
| author_facet |
Asakawa, T. Watamura, S. |
| publishDate |
2010 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We describe the twist quantization of string worldsheet theory, which unifies the description of quantization and the target space symmetry, based on the twisting of Hopf and module algebras. We formulate a method of decomposing a twist into successive twists to analyze the twisted Hopf and module algebra structure, and apply it to several examples, including finite twisted diffeomorphism and extra treatment for zero modes.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146532 |
| citation_txt |
Twist Quantization of String and Hopf Algebraic Symmetry / T. Asakawa, S. Watamura // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 21 назв. — англ. |
| work_keys_str_mv |
AT asakawat twistquantizationofstringandhopfalgebraicsymmetry AT watamuras twistquantizationofstringandhopfalgebraicsymmetry |
| first_indexed |
2025-12-07T18:57:56Z |
| last_indexed |
2025-12-07T18:57:56Z |
| _version_ |
1850877020029845504 |