Hopf Maps, Lowest Landau Level, and Fuzzy Spheres

This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fu...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2010
Автор: Hasebe, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2010
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146533
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hopf Maps, Lowest Landau Level, and Fuzzy Spheres / K. Hasebe // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 102 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146533
record_format dspace
spelling Hasebe, K.
2019-02-09T20:29:48Z
2019-02-09T20:29:48Z
2010
Hopf Maps, Lowest Landau Level, and Fuzzy Spheres / K. Hasebe // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 102 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B70; 58B34; 81V70
DOI:10.3842/SIGMA.2010.071
https://nasplib.isofts.kiev.ua/handle/123456789/146533
This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an interesting hierarchical structure made of ''compounds'' of lower dimensional spheres. We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions. With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.
This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The ful`l collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html. I would like to thank Yusuke Kimura for collaborations. Many crucial ingredients in this review are based on the works with him. I am also indebted to Takehiro Azuma for email correspondence about mathematics of fuzzy spheres. Since this article is a review-type, many important works not performed by the author are included. Hereby, I express my gratitude to the researchers whose works are reviewed in the paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
spellingShingle Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
Hasebe, K.
title_short Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
title_full Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
title_fullStr Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
title_full_unstemmed Hopf Maps, Lowest Landau Level, and Fuzzy Spheres
title_sort hopf maps, lowest landau level, and fuzzy spheres
author Hasebe, K.
author_facet Hasebe, K.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This paper is a review of monopoles, lowest Landau level, fuzzy spheres, and their mutual relations. The Hopf maps of division algebras provide a prototype relation between monopoles and fuzzy spheres. Generalization of complex numbers to Clifford algebra is exactly analogous to generalization of fuzzy two-spheres to higher dimensional fuzzy spheres. Higher dimensional fuzzy spheres have an interesting hierarchical structure made of ''compounds'' of lower dimensional spheres. We give a physical interpretation for such particular structure of fuzzy spheres by utilizing Landau models in generic even dimensions. With Grassmann algebra, we also introduce a graded version of the Hopf map, and discuss its relation to fuzzy supersphere in context of supersymmetric Landau model.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146533
citation_txt Hopf Maps, Lowest Landau Level, and Fuzzy Spheres / K. Hasebe // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 102 назв. — англ.
work_keys_str_mv AT hasebek hopfmapslowestlandaulevelandfuzzyspheres
first_indexed 2025-12-07T17:51:32Z
last_indexed 2025-12-07T17:51:32Z
_version_ 1850872842688659456