Snyder Space-Time: K-Loop and Lie Triple System

Different deformations of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2,R), Moyal). We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth ''K-loop'', a non-associati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2010
1. Verfasser: Girelli, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146535
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Snyder Space-Time: K-Loop and Lie Triple System / F. Girelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146535
record_format dspace
spelling Girelli, F.
2019-02-09T20:31:50Z
2019-02-09T20:31:50Z
2010
Snyder Space-Time: K-Loop and Lie Triple System / F. Girelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17C90; 81T75
DOI:10.3842/SIGMA.2010.074
https://nasplib.isofts.kiev.ua/handle/123456789/146535
Different deformations of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2,R), Moyal). We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth ''K-loop'', a non-associative generalization of Abelian Lie groups, and its infinitesimal counterpart given by the Lie triple system are the key objects in the construction.
This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is available at http://www.emis.de/journals/SIGMA/noncommutative.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Snyder Space-Time: K-Loop and Lie Triple System
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Snyder Space-Time: K-Loop and Lie Triple System
spellingShingle Snyder Space-Time: K-Loop and Lie Triple System
Girelli, F.
title_short Snyder Space-Time: K-Loop and Lie Triple System
title_full Snyder Space-Time: K-Loop and Lie Triple System
title_fullStr Snyder Space-Time: K-Loop and Lie Triple System
title_full_unstemmed Snyder Space-Time: K-Loop and Lie Triple System
title_sort snyder space-time: k-loop and lie triple system
author Girelli, F.
author_facet Girelli, F.
publishDate 2010
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Different deformations of the Poincaré symmetries have been identified for various non-commutative spaces (e.g. κ-Minkowski, sl(2,R), Moyal). We present here the deformation of the Poincaré symmetries related to Snyder space-time. The notions of smooth ''K-loop'', a non-associative generalization of Abelian Lie groups, and its infinitesimal counterpart given by the Lie triple system are the key objects in the construction.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146535
citation_txt Snyder Space-Time: K-Loop and Lie Triple System / F. Girelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2010. — Т. 6. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT girellif snyderspacetimekloopandlietriplesystem
first_indexed 2025-12-01T04:10:40Z
last_indexed 2025-12-01T04:10:40Z
_version_ 1850859239429373952