Everywhere Equivalent 3-Braids

A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
1. Verfasser: Stoimenow, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146539
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146539
record_format dspace
spelling Stoimenow, A.
2019-02-09T21:00:00Z
2019-02-09T21:00:00Z
2014
Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 57M25; 20F36; 20E45; 20C08
DOI:10.3842/SIGMA.2014.105
https://nasplib.isofts.kiev.ua/handle/123456789/146539
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
I wish to thank K. Taniyama and R. Shinjo for proposing the problems to me, and the referees for their helpful comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Everywhere Equivalent 3-Braids
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Everywhere Equivalent 3-Braids
spellingShingle Everywhere Equivalent 3-Braids
Stoimenow, A.
title_short Everywhere Equivalent 3-Braids
title_full Everywhere Equivalent 3-Braids
title_fullStr Everywhere Equivalent 3-Braids
title_full_unstemmed Everywhere Equivalent 3-Braids
title_sort everywhere equivalent 3-braids
author Stoimenow, A.
author_facet Stoimenow, A.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146539
citation_txt Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT stoimenowa everywhereequivalent3braids
first_indexed 2025-12-07T17:20:48Z
last_indexed 2025-12-07T17:20:48Z
_version_ 1850870908458106880