Everywhere Equivalent 3-Braids
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2014 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146539 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146539 |
|---|---|
| record_format |
dspace |
| spelling |
Stoimenow, A. 2019-02-09T21:00:00Z 2019-02-09T21:00:00Z 2014 Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 57M25; 20F36; 20E45; 20C08 DOI:10.3842/SIGMA.2014.105 https://nasplib.isofts.kiev.ua/handle/123456789/146539 A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid. I wish to thank K. Taniyama and R. Shinjo for proposing the problems to me, and the referees for their helpful comments. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Everywhere Equivalent 3-Braids Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Everywhere Equivalent 3-Braids |
| spellingShingle |
Everywhere Equivalent 3-Braids Stoimenow, A. |
| title_short |
Everywhere Equivalent 3-Braids |
| title_full |
Everywhere Equivalent 3-Braids |
| title_fullStr |
Everywhere Equivalent 3-Braids |
| title_full_unstemmed |
Everywhere Equivalent 3-Braids |
| title_sort |
everywhere equivalent 3-braids |
| author |
Stoimenow, A. |
| author_facet |
Stoimenow, A. |
| publishDate |
2014 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146539 |
| citation_txt |
Everywhere Equivalent 3-Braids/ A. Stoimenow // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT stoimenowa everywhereequivalent3braids |
| first_indexed |
2025-12-07T17:20:48Z |
| last_indexed |
2025-12-07T17:20:48Z |
| _version_ |
1850870908458106880 |