Quantum Dimension and Quantum Projective Spaces
We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimensio...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2014 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2014
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146544 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out.
|
|---|---|
| ISSN: | 1815-0659 |