Quantum Dimension and Quantum Projective Spaces

We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
1. Verfasser: Matassa, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146544
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146544
record_format dspace
spelling Matassa, M.
2019-02-09T21:11:52Z
2019-02-09T21:11:52Z
2014
Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58J42; 58B32; 46L87
DOI:10.3842/SIGMA.2014.097
https://nasplib.isofts.kiev.ua/handle/123456789/146544
We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out.
I wish to thank Jens Kaad for helpful comments on a first version of this paper. I also want to thank the anonymous referees, whose observations have improved this presentation.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Quantum Dimension and Quantum Projective Spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Quantum Dimension and Quantum Projective Spaces
spellingShingle Quantum Dimension and Quantum Projective Spaces
Matassa, M.
title_short Quantum Dimension and Quantum Projective Spaces
title_full Quantum Dimension and Quantum Projective Spaces
title_fullStr Quantum Dimension and Quantum Projective Spaces
title_full_unstemmed Quantum Dimension and Quantum Projective Spaces
title_sort quantum dimension and quantum projective spaces
author Matassa, M.
author_facet Matassa, M.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K₂ρ or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146544
citation_txt Quantum Dimension and Quantum Projective Spaces / M. Matassa // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT matassam quantumdimensionandquantumprojectivespaces
first_indexed 2025-12-07T18:50:34Z
last_indexed 2025-12-07T18:50:34Z
_version_ 1850876556194349056