Algebraic Geometry of Matrix Product States

We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автори: Critch, A., Morton, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146599
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algebraic Geometry of Matrix Product States / A. Critch, J. Morton // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146599
record_format dspace
spelling Critch, A.
Morton, J.
2019-02-10T09:46:25Z
2019-02-10T09:46:25Z
2014
Algebraic Geometry of Matrix Product States / A. Critch, J. Morton // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14J81; 81Q80; 14Q15
DOI:10.3842/SIGMA.2014.095
https://nasplib.isofts.kiev.ua/handle/123456789/146599
We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with few qubits, we give these equations explicitly, considering both periodic and open boundary conditions. Using the classical theory of trace varieties and trace algebras, we explain the relationship between MPS and hidden Markov models and exploit this relationship to derive useful parameterizations of MPS. We make four conjectures on the identifiability of MPS parameters.
AC and JM were supported in part by DARPA under awards FA8650-10-C-7020 and N66001-10- 1-4040 respectively. We would like to thank J. Biamonte, J. Eisert, B. Sturmfels, F. Vaccarino, F. Verstraete, and G. Vidal for helpful discussions. We are also grateful to anonymous referees who provided helpful comments and corrections.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Algebraic Geometry of Matrix Product States
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Algebraic Geometry of Matrix Product States
spellingShingle Algebraic Geometry of Matrix Product States
Critch, A.
Morton, J.
title_short Algebraic Geometry of Matrix Product States
title_full Algebraic Geometry of Matrix Product States
title_fullStr Algebraic Geometry of Matrix Product States
title_full_unstemmed Algebraic Geometry of Matrix Product States
title_sort algebraic geometry of matrix product states
author Critch, A.
Morton, J.
author_facet Critch, A.
Morton, J.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with few qubits, we give these equations explicitly, considering both periodic and open boundary conditions. Using the classical theory of trace varieties and trace algebras, we explain the relationship between MPS and hidden Markov models and exploit this relationship to derive useful parameterizations of MPS. We make four conjectures on the identifiability of MPS parameters.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146599
citation_txt Algebraic Geometry of Matrix Product States / A. Critch, J. Morton // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT critcha algebraicgeometryofmatrixproductstates
AT mortonj algebraicgeometryofmatrixproductstates
first_indexed 2025-12-07T19:18:55Z
last_indexed 2025-12-07T19:18:55Z
_version_ 1850878339451977728