Beables/Observables in Classical and Quantum Gravity

Observables 'are observed' whereas beables just 'are'. This gives beables more scope in the cosmological and quantum domains. Both observables and beables are entities that form 'brackets' with 'the constraints' that are 'equal to' zero. We explain h...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автор: Anderson, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146604
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Beables/Observables in Classical and Quantum Gravity / E. Anderson // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 169 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146604
record_format dspace
spelling Anderson, E.
2019-02-10T09:53:52Z
2019-02-10T09:53:52Z
2014
Beables/Observables in Classical and Quantum Gravity / E. Anderson // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 169 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 83C05; 83C45; 83D05; 70H45; 81S05
DOI:10.3842/SIGMA.2014.092
https://nasplib.isofts.kiev.ua/handle/123456789/146604
Observables 'are observed' whereas beables just 'are'. This gives beables more scope in the cosmological and quantum domains. Both observables and beables are entities that form 'brackets' with 'the constraints' that are 'equal to' zero. We explain how depending on circumstances, these could be, e.g., Poisson, Dirac, commutator, histories, Schouten-Nijenhuis, double or Nambu brackets, first-class, gauge, linear or effective constraints, and strong, weak or weak-effective equalities. The Dirac-Bergmann distinction in notions of gauge leads to further notions of observables or beables, and is tied to a number of diffeomorphism-specific subtleties. Thus we cover a wide range of notions of observables or beables that occur in classical and quantum gravitational theories: Dirac, Kuchař, effective, Bergmann, histories, multisymplectic, master, Nambu and bi-. Indeed this review covers a representatively wide range of such theories: general relativity, loop quantum gravity, histories theory, supergravity and M-theory.
E.A. thanks close people, Julian Barbour, Jeremy Butterfield, Harvey Brown, Sean Gryb, Jonathan Halliwell, Philipp H¨ohn, Chris Isham, Flavio Mercati, Brian Pitts, Josep Maria Pons, Oliver Pooley, Donald Salisbury, Dimitri Vey, Hans Westman, Michael Wright and the anonymous referees for discussions, Jeremy Butterfield, John Barrow, Marc Lachi´eze–Rey, Malcolm MacCallum, Don Page, Reza Tavakol, Juan Valiente-Kroon and Paulo Vargas-Moniz for help with my career, and DAMTP Cambridge, Perimeter Institute Waterloo and the University of New Brunswick Fredericton for hospitality at various points during the making of this review. This work started within my grant from the Foundational Questions Institute (FQXi) Fund, a donor-advised fund of the Silicon Valley Community Foundation on the basis of proposal FQXi-RFP3-1101 to the FQXi, administered via Theiss Research and the CNRS and held at APC Universit´e Paris Diderot.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Beables/Observables in Classical and Quantum Gravity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Beables/Observables in Classical and Quantum Gravity
spellingShingle Beables/Observables in Classical and Quantum Gravity
Anderson, E.
title_short Beables/Observables in Classical and Quantum Gravity
title_full Beables/Observables in Classical and Quantum Gravity
title_fullStr Beables/Observables in Classical and Quantum Gravity
title_full_unstemmed Beables/Observables in Classical and Quantum Gravity
title_sort beables/observables in classical and quantum gravity
author Anderson, E.
author_facet Anderson, E.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Observables 'are observed' whereas beables just 'are'. This gives beables more scope in the cosmological and quantum domains. Both observables and beables are entities that form 'brackets' with 'the constraints' that are 'equal to' zero. We explain how depending on circumstances, these could be, e.g., Poisson, Dirac, commutator, histories, Schouten-Nijenhuis, double or Nambu brackets, first-class, gauge, linear or effective constraints, and strong, weak or weak-effective equalities. The Dirac-Bergmann distinction in notions of gauge leads to further notions of observables or beables, and is tied to a number of diffeomorphism-specific subtleties. Thus we cover a wide range of notions of observables or beables that occur in classical and quantum gravitational theories: Dirac, Kuchař, effective, Bergmann, histories, multisymplectic, master, Nambu and bi-. Indeed this review covers a representatively wide range of such theories: general relativity, loop quantum gravity, histories theory, supergravity and M-theory.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146604
citation_txt Beables/Observables in Classical and Quantum Gravity / E. Anderson // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 169 назв. — англ.
work_keys_str_mv AT andersone beablesobservablesinclassicalandquantumgravity
first_indexed 2025-12-07T19:37:03Z
last_indexed 2025-12-07T19:37:03Z
_version_ 1850879480345657344