Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)

We have classified special solutions around the origin for the two-dimensional degenerate Garnier system G(1112) with generic values of complex parameters, whose linear monodromy can be calculated explicitly.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автор: Kaneko, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146607
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112) / K. Kaneko // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146607
record_format dspace
spelling Kaneko, K.
2019-02-10T09:56:45Z
2019-02-10T09:56:45Z
2014
Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112) / K. Kaneko // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 33C15
DOI:10.3842/SIGMA.2014.069
https://nasplib.isofts.kiev.ua/handle/123456789/146607
We have classified special solutions around the origin for the two-dimensional degenerate Garnier system G(1112) with generic values of complex parameters, whose linear monodromy can be calculated explicitly.
The author wishes to thank Professor Y. Ohyama for his constant guidance and useful suggestions to complete this work. The author also gives thanks to the anonymous referees for their relevant contributions to improve this paper. This work was supported by JSPS KAKENHI Grant Number 22540237 and the Mitsubishi Foundation.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
spellingShingle Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
Kaneko, K.
title_short Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
title_full Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
title_fullStr Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
title_full_unstemmed Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
title_sort special solutions and linear monodromy for the two-dimensional degenerate garnier system g(1112)
author Kaneko, K.
author_facet Kaneko, K.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We have classified special solutions around the origin for the two-dimensional degenerate Garnier system G(1112) with generic values of complex parameters, whose linear monodromy can be calculated explicitly.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146607
citation_txt Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112) / K. Kaneko // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT kanekok specialsolutionsandlinearmonodromyforthetwodimensionaldegenerategarniersystemg1112
first_indexed 2025-12-07T18:26:29Z
last_indexed 2025-12-07T18:26:29Z
_version_ 1850875041403633664