Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation

We consider a q-Painlevé IV equation which is the A₄⁽¹⁾-surface type in the Sakai's classification. We find three distinct types of classical solutions with determinantal structures whose elements are basic hypergeometric functions. Two of them are expressed by ₂φ₁ basic hypergeometric series a...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автор: Nakazono, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146608
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 41 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146608
record_format dspace
spelling Nakazono, N.
2019-02-10T09:57:23Z
2019-02-10T09:57:23Z
2014
Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33D05; 33D15; 33D45; 33E17; 39A13
DOI:10.3842/SIGMA.2014.090
https://nasplib.isofts.kiev.ua/handle/123456789/146608
We consider a q-Painlevé IV equation which is the A₄⁽¹⁾-surface type in the Sakai's classification. We find three distinct types of classical solutions with determinantal structures whose elements are basic hypergeometric functions. Two of them are expressed by ₂φ₁ basic hypergeometric series and the other is given by ₂ψ₂ bilateral basic hypergeometric series.
The author would like to thank Professors K. Kajiwara, S. Kakei, H. Miki, M. Noumi, and S. Tsujimoto for the useful comments. He also appreciates the valuable comments from the referees which have improved the quality of this paper. This work has been supported by JSPS Grant-in-Aid for Scientific Research No. 22·4366 and the Australian Research Council grant DP130100967.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation
spellingShingle Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation
Nakazono, N.
title_short Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation
title_full Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation
title_fullStr Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation
title_full_unstemmed Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation
title_sort hypergeometric solutions of the a₄⁽¹⁾-surface q-painlevé iv equation
author Nakazono, N.
author_facet Nakazono, N.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider a q-Painlevé IV equation which is the A₄⁽¹⁾-surface type in the Sakai's classification. We find three distinct types of classical solutions with determinantal structures whose elements are basic hypergeometric functions. Two of them are expressed by ₂φ₁ basic hypergeometric series and the other is given by ₂ψ₂ bilateral basic hypergeometric series.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146608
citation_txt Hypergeometric Solutions of the A₄⁽¹⁾-Surface q-Painlevé IV Equation / N. Nakazono // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT nakazonon hypergeometricsolutionsofthea41surfaceqpainleveivequation
first_indexed 2025-12-07T15:23:54Z
last_indexed 2025-12-07T15:23:54Z
_version_ 1850863554228387840