Matrix Bases for Star Products: a Review

We review the matrix bases for a family of noncommutative ⋆ products based on a Weyl map. These products include the Moyal product, as well as the Wick-Voros products and other translation invariant ones. We also review the derivation of Lie algebra type star products, with adapted matrix bases. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
Hauptverfasser: Lizzi, F., Vitale, P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146614
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Matrix Bases for Star Products: a Review / F. Lizzi, P. Vitale // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 83 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146614
record_format dspace
spelling Lizzi, F.
Vitale, P.
2019-02-10T10:04:21Z
2019-02-10T10:04:21Z
2014
Matrix Bases for Star Products: a Review / F. Lizzi, P. Vitale // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 83 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58Bxx; 40C05; 46L65
DOI:10.3842/SIGMA.2014.086
https://nasplib.isofts.kiev.ua/handle/123456789/146614
We review the matrix bases for a family of noncommutative ⋆ products based on a Weyl map. These products include the Moyal product, as well as the Wick-Voros products and other translation invariant ones. We also review the derivation of Lie algebra type star products, with adapted matrix bases. We discuss the uses of these matrix bases for field theory, fuzzy spaces and emergent gravity.
This paper is a contribution to the Special Issue on Deformations of Space-Time and its Symmetries. The full collection is available at http://www.emis.de/journals/SIGMA/space-time.html. We were partially supported by UniNA and Compagnia di San Paolo under the grant “Programma STAR 2013”. F. Lizzi acknowledges support by CUR Generalitat de Catalunya under project FPA2010-20807.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Matrix Bases for Star Products: a Review
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Matrix Bases for Star Products: a Review
spellingShingle Matrix Bases for Star Products: a Review
Lizzi, F.
Vitale, P.
title_short Matrix Bases for Star Products: a Review
title_full Matrix Bases for Star Products: a Review
title_fullStr Matrix Bases for Star Products: a Review
title_full_unstemmed Matrix Bases for Star Products: a Review
title_sort matrix bases for star products: a review
author Lizzi, F.
Vitale, P.
author_facet Lizzi, F.
Vitale, P.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We review the matrix bases for a family of noncommutative ⋆ products based on a Weyl map. These products include the Moyal product, as well as the Wick-Voros products and other translation invariant ones. We also review the derivation of Lie algebra type star products, with adapted matrix bases. We discuss the uses of these matrix bases for field theory, fuzzy spaces and emergent gravity.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146614
citation_txt Matrix Bases for Star Products: a Review / F. Lizzi, P. Vitale // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 83 назв. — англ.
work_keys_str_mv AT lizzif matrixbasesforstarproductsareview
AT vitalep matrixbasesforstarproductsareview
first_indexed 2025-12-07T18:28:56Z
last_indexed 2025-12-07T18:28:56Z
_version_ 1850875195333541888