Groupoid Actions on Fractafolds

We define a bundle over a totally disconnected set such that each fiber is homeomorphic to a fractal blowup. We prove that there is a natural action of a Renault-Deaconu groupoid on our fractafold bundle and that the resulting action groupoid is a Renault-Deaconu groupoid itself. We also show that w...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автори: Ionescu, M., Kumjian, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146623
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Groupoid Actions on Fractafolds / M. Ionescu, A. Kumjian // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146623
record_format dspace
spelling Ionescu, M.
Kumjian, A.
2019-02-10T10:14:53Z
2019-02-10T10:14:53Z
2014
Groupoid Actions on Fractafolds / M. Ionescu, A. Kumjian // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 28A80; 22A22; 46L55; 46L05
DOI:10.3842/SIGMA.2014.068
https://nasplib.isofts.kiev.ua/handle/123456789/146623
We define a bundle over a totally disconnected set such that each fiber is homeomorphic to a fractal blowup. We prove that there is a natural action of a Renault-Deaconu groupoid on our fractafold bundle and that the resulting action groupoid is a Renault-Deaconu groupoid itself. We also show that when the bundle is locally compact the associated C∗-algebra is primitive and has a densely defined lower-semicontinuous trace.
This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. The work of the first author was partially supported by a grant from the Simons Foundation (#209277 to Marius Ionescu). The authors would like to thank the referees for their helpful comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Groupoid Actions on Fractafolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Groupoid Actions on Fractafolds
spellingShingle Groupoid Actions on Fractafolds
Ionescu, M.
Kumjian, A.
title_short Groupoid Actions on Fractafolds
title_full Groupoid Actions on Fractafolds
title_fullStr Groupoid Actions on Fractafolds
title_full_unstemmed Groupoid Actions on Fractafolds
title_sort groupoid actions on fractafolds
author Ionescu, M.
Kumjian, A.
author_facet Ionescu, M.
Kumjian, A.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We define a bundle over a totally disconnected set such that each fiber is homeomorphic to a fractal blowup. We prove that there is a natural action of a Renault-Deaconu groupoid on our fractafold bundle and that the resulting action groupoid is a Renault-Deaconu groupoid itself. We also show that when the bundle is locally compact the associated C∗-algebra is primitive and has a densely defined lower-semicontinuous trace.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146623
citation_txt Groupoid Actions on Fractafolds / M. Ionescu, A. Kumjian // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT ionescum groupoidactionsonfractafolds
AT kumjiana groupoidactionsonfractafolds
first_indexed 2025-11-28T01:22:41Z
last_indexed 2025-11-28T01:22:41Z
_version_ 1850853129607708672