Non-Commutative Resistance Networks

In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
1. Verfasser: Rieffel, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146653
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146653
record_format dspace
spelling Rieffel, M.A.
2019-02-10T15:10:53Z
2019-02-10T15:10:53Z
2014
Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 46L87; 46L57; 58B34
DOI:10.3842/SIGMA.2014.064
https://nasplib.isofts.kiev.ua/handle/123456789/146653
In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.
This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. The research reported here was supported in part by National Science Foundation grant DMS1066368.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Non-Commutative Resistance Networks
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-Commutative Resistance Networks
spellingShingle Non-Commutative Resistance Networks
Rieffel, M.A.
title_short Non-Commutative Resistance Networks
title_full Non-Commutative Resistance Networks
title_fullStr Non-Commutative Resistance Networks
title_full_unstemmed Non-Commutative Resistance Networks
title_sort non-commutative resistance networks
author Rieffel, M.A.
author_facet Rieffel, M.A.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146653
citation_txt Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.
work_keys_str_mv AT rieffelma noncommutativeresistancenetworks
first_indexed 2025-12-01T01:56:14Z
last_indexed 2025-12-01T01:56:14Z
_version_ 1850859021941080064