Non-Commutative Resistance Networks
In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corr...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2014 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146653 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146653 |
|---|---|
| record_format |
dspace |
| spelling |
Rieffel, M.A. 2019-02-10T15:10:53Z 2019-02-10T15:10:53Z 2014 Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L87; 46L57; 58B34 DOI:10.3842/SIGMA.2014.064 https://nasplib.isofts.kiev.ua/handle/123456789/146653 In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation. This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. The research reported here was supported in part by National Science Foundation grant DMS1066368. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Non-Commutative Resistance Networks Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Non-Commutative Resistance Networks |
| spellingShingle |
Non-Commutative Resistance Networks Rieffel, M.A. |
| title_short |
Non-Commutative Resistance Networks |
| title_full |
Non-Commutative Resistance Networks |
| title_fullStr |
Non-Commutative Resistance Networks |
| title_full_unstemmed |
Non-Commutative Resistance Networks |
| title_sort |
non-commutative resistance networks |
| author |
Rieffel, M.A. |
| author_facet |
Rieffel, M.A. |
| publishDate |
2014 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146653 |
| citation_txt |
Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. |
| work_keys_str_mv |
AT rieffelma noncommutativeresistancenetworks |
| first_indexed |
2025-12-01T01:56:14Z |
| last_indexed |
2025-12-01T01:56:14Z |
| _version_ |
1850859021941080064 |