Integrable Systems Related to Deformed so(5)

We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation....

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2014
Main Authors: Dobrogowska, A., Odzijewicz, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2014
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146683
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146683
record_format dspace
spelling Dobrogowska, A.
Odzijewicz, A.
2019-02-10T18:08:57Z
2019-02-10T18:08:57Z
2014
Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 70H06; 37J15; 53D17
DOI:10.3842/SIGMA.2014.056
https://nasplib.isofts.kiev.ua/handle/123456789/146683
We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation.
Authors are grateful to the first referee for invaluable remarks which allowed us to avoid mistakes and make the paper more readable.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Integrable Systems Related to Deformed so(5)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Integrable Systems Related to Deformed so(5)
spellingShingle Integrable Systems Related to Deformed so(5)
Dobrogowska, A.
Odzijewicz, A.
title_short Integrable Systems Related to Deformed so(5)
title_full Integrable Systems Related to Deformed so(5)
title_fullStr Integrable Systems Related to Deformed so(5)
title_full_unstemmed Integrable Systems Related to Deformed so(5)
title_sort integrable systems related to deformed so(5)
author Dobrogowska, A.
Odzijewicz, A.
author_facet Dobrogowska, A.
Odzijewicz, A.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146683
citation_txt Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT dobrogowskaa integrablesystemsrelatedtodeformedso5
AT odzijewicza integrablesystemsrelatedtodeformedso5
first_indexed 2025-12-01T23:12:15Z
last_indexed 2025-12-01T23:12:15Z
_version_ 1850861055291424768