Two-Point Functions on Deformed Spacetime
We present a review of the one-loop photon (Π) and neutrino (Σ) two-point functions in a covariant and deformed U(1) gauge-theory on the 4-dimensional noncommutative spaces, determined by a constant antisymmetric tensor θμν, and by a parameter-space (κf,κg), respectively. For the general fermion-pho...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2014 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146685 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Two-Point Functions on Deformed Spacetime / J. Trampetić, J. You // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 75 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We present a review of the one-loop photon (Π) and neutrino (Σ) two-point functions in a covariant and deformed U(1) gauge-theory on the 4-dimensional noncommutative spaces, determined by a constant antisymmetric tensor θμν, and by a parameter-space (κf,κg), respectively. For the general fermion-photon Sf(κf) and photon self-interaction Sg(κg) the closed form results reveal two-point functions with all kind of pathological terms: the UV divergence, the quadratic UV/IR mixing terms as well as a logarithmic IR divergent term of the type ln(μ²(θp)²). In addition, the photon-loop produces new tensor structures satisfying transversality condition by themselves. We show that the photon two-point function in the 4-dimensional Euclidean spacetime can be reduced to two finite terms by imposing a specific full rank of θμν and setting deformation parameters (κf,κg)=(0,3). In this case the neutrino two-point function vanishes. Thus for a specific point (0,3) in the parameter-space (κf,κg), a covariant θ-exact approach is able to produce a divergence-free result for the one-loop quantum corrections, having also both well-defined commutative limit and point-like limit of an extended object.
|
|---|---|
| ISSN: | 1815-0659 |