Graded Limits of Minimal Affinizations in Type D

We study the graded limits of minimal affinizations over a quantum loop algebra of type D in the regular case. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their defining relations. As a corollary we obtain a character formula for the m...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автор: Naoi, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146688
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Graded Limits of Minimal Affinizations in Type D / K. Naoi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146688
record_format dspace
spelling Naoi, K.
2019-02-10T18:52:29Z
2019-02-10T18:52:29Z
2014
Graded Limits of Minimal Affinizations in Type D / K. Naoi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B37; 17B10
DOI:10.3842/SIGMA.2014.047
https://nasplib.isofts.kiev.ua/handle/123456789/146688
We study the graded limits of minimal affinizations over a quantum loop algebra of type D in the regular case. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their defining relations. As a corollary we obtain a character formula for the minimal affinizations in terms of Demazure operators, and a multiplicity formula for a special class of the minimal affinizations.
This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html. The author would like to thank Steven V. Sam for informing him of the results in [22]. This work was supported by JSPS Grant-in-Aid for Young Scientists (B) No. 25800006, and by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Graded Limits of Minimal Affinizations in Type D
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Graded Limits of Minimal Affinizations in Type D
spellingShingle Graded Limits of Minimal Affinizations in Type D
Naoi, K.
title_short Graded Limits of Minimal Affinizations in Type D
title_full Graded Limits of Minimal Affinizations in Type D
title_fullStr Graded Limits of Minimal Affinizations in Type D
title_full_unstemmed Graded Limits of Minimal Affinizations in Type D
title_sort graded limits of minimal affinizations in type d
author Naoi, K.
author_facet Naoi, K.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the graded limits of minimal affinizations over a quantum loop algebra of type D in the regular case. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their defining relations. As a corollary we obtain a character formula for the minimal affinizations in terms of Demazure operators, and a multiplicity formula for a special class of the minimal affinizations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146688
citation_txt Graded Limits of Minimal Affinizations in Type D / K. Naoi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT naoik gradedlimitsofminimalaffinizationsintyped
first_indexed 2025-12-07T18:51:39Z
last_indexed 2025-12-07T18:51:39Z
_version_ 1850876624287825920