Graded Limits of Minimal Affinizations in Type D
We study the graded limits of minimal affinizations over a quantum loop algebra of type D in the regular case. We show that the graded limits are isomorphic to multiple generalizations of Demazure modules, and also give their defining relations. As a corollary we obtain a character formula for the m...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2014 |
| 1. Verfasser: | Naoi, K. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146688 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Graded Limits of Minimal Affinizations in Type D / K. Naoi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Graded limits of minimal affinizations and beyond: the multiplicity free case for type E₆
von: Moura, A., et al.
Veröffentlicht: (2011) -
Graded limits of minimal affinizations and beyond: the multiplicity free case for type \(E_6\)
von: Moura, Adriano, et al.
Veröffentlicht: (2018) -
Remarks on mass transportation minimizing expectation of a minimum of affine functions
von: A. V. Kolesnikov, et al.
Veröffentlicht: (2016) -
A Note on Limit Shapes of Minimal Difference Partitions
von: Comtet, A., et al.
Veröffentlicht: (2008) -
Isomorphism between the R-Matrix and Drinfeld Presentations of Quantum Affine Algebra: Types B and D
von: Jing, Naihuan, et al.
Veröffentlicht: (2020)