Scalar Flat Kähler Metrics on Affine Bundles over CP¹

We show that the total space of any affine C-bundle over CP¹ with negative degree admits an ALE scalar-flat Kähler metric. Here the degree of an affine bundle means the negative of the self-intersection number of the section at infinity in a natural compactification of the bundle, and so for line bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
1. Verfasser: Honda, N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146689
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Scalar Flat Kähler Metrics on Affine Bundles over CP¹ / N. Honda // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146689
record_format dspace
spelling Honda, N.
2019-02-10T18:55:07Z
2019-02-10T18:55:07Z
2014
Scalar Flat Kähler Metrics on Affine Bundles over CP¹ / N. Honda // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53A30
DOI:10.3842/SIGMA.2014.046
https://nasplib.isofts.kiev.ua/handle/123456789/146689
We show that the total space of any affine C-bundle over CP¹ with negative degree admits an ALE scalar-flat Kähler metric. Here the degree of an affine bundle means the negative of the self-intersection number of the section at infinity in a natural compactification of the bundle, and so for line bundles it agrees with the usual notion of the degree.
This paper is a contribution to the Special Issue on Progress in Twistor Theory. The full collection is available at http://www.emis.de/journals/SIGMA/twistors.html. I would like to thank Jef f Viaclovsky for numerous useful discussion from which this work has originated. Also I would like to thank Akira Fujiki for invaluable comments on deformations of line bundles. This work was supported by JSPS KAKENHI Grant Number 24540061.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Scalar Flat Kähler Metrics on Affine Bundles over CP¹
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Scalar Flat Kähler Metrics on Affine Bundles over CP¹
spellingShingle Scalar Flat Kähler Metrics on Affine Bundles over CP¹
Honda, N.
title_short Scalar Flat Kähler Metrics on Affine Bundles over CP¹
title_full Scalar Flat Kähler Metrics on Affine Bundles over CP¹
title_fullStr Scalar Flat Kähler Metrics on Affine Bundles over CP¹
title_full_unstemmed Scalar Flat Kähler Metrics on Affine Bundles over CP¹
title_sort scalar flat kähler metrics on affine bundles over cp¹
author Honda, N.
author_facet Honda, N.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that the total space of any affine C-bundle over CP¹ with negative degree admits an ALE scalar-flat Kähler metric. Here the degree of an affine bundle means the negative of the self-intersection number of the section at infinity in a natural compactification of the bundle, and so for line bundles it agrees with the usual notion of the degree.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146689
citation_txt Scalar Flat Kähler Metrics on Affine Bundles over CP¹ / N. Honda // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT hondan scalarflatkahlermetricsonaffinebundlesovercp1
first_indexed 2025-11-30T15:31:13Z
last_indexed 2025-11-30T15:31:13Z
_version_ 1850857973258125312