Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)
The Riemann-Hilbert approach for the equations PIII(D6) and PIII(D7) is studied in detail, involving moduli spaces for connections and monodromy data, Okamoto-Painlevé varieties, the Painlevé property, special solutions and explicit Bäcklund transformations.
Gespeichert in:
| Datum: | 2014 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146693 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇) / Marius van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The Riemann-Hilbert approach for the equations PIII(D6) and PIII(D7) is studied in detail, involving moduli spaces for connections and monodromy data, Okamoto-Painlevé varieties, the Painlevé property, special solutions and explicit Bäcklund transformations. |
|---|