Local Proof of Algebraic Characterization of Free Actions

Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
Hauptverfasser: Baum, P.F., Hajac, P.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146694
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146694
record_format dspace
spelling Baum, P.F.
Hajac, P.M.
2019-02-10T19:06:55Z
2019-02-10T19:06:55Z
2014
Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 22C05; 55R10; 57S05; 57S10
DOI:10.3842/SIGMA.2014.060
https://nasplib.isofts.kiev.ua/handle/123456789/146694
Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G.
This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. We thank the referees for the careful attention they have given to this paper. This work was partially supported by NCN grant 2011/01/B/ST1/06474. P.F. Baum was partially supported by NSF grant DMS 0701184.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Local Proof of Algebraic Characterization of Free Actions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Local Proof of Algebraic Characterization of Free Actions
spellingShingle Local Proof of Algebraic Characterization of Free Actions
Baum, P.F.
Hajac, P.M.
title_short Local Proof of Algebraic Characterization of Free Actions
title_full Local Proof of Algebraic Characterization of Free Actions
title_fullStr Local Proof of Algebraic Characterization of Free Actions
title_full_unstemmed Local Proof of Algebraic Characterization of Free Actions
title_sort local proof of algebraic characterization of free actions
author Baum, P.F.
Hajac, P.M.
author_facet Baum, P.F.
Hajac, P.M.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146694
citation_txt Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT baumpf localproofofalgebraiccharacterizationoffreeactions
AT hajacpm localproofofalgebraiccharacterizationoffreeactions
first_indexed 2025-12-07T20:26:38Z
last_indexed 2025-12-07T20:26:38Z
_version_ 1850882599802634240