Schur Positivity and Kirillov-Reshetikhin Modules
In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of t...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2014 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146696 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146696 |
|---|---|
| record_format |
dspace |
| spelling |
Fourier, G. Hernandez, D. 2019-02-10T19:08:25Z 2019-02-10T19:08:25Z 2014 Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B10; 17B37; 05E05 DOI:10.3842/SIGMA.2014.058 https://nasplib.isofts.kiev.ua/handle/123456789/146696 In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions. This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Schur Positivity and Kirillov-Reshetikhin Modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Schur Positivity and Kirillov-Reshetikhin Modules |
| spellingShingle |
Schur Positivity and Kirillov-Reshetikhin Modules Fourier, G. Hernandez, D. |
| title_short |
Schur Positivity and Kirillov-Reshetikhin Modules |
| title_full |
Schur Positivity and Kirillov-Reshetikhin Modules |
| title_fullStr |
Schur Positivity and Kirillov-Reshetikhin Modules |
| title_full_unstemmed |
Schur Positivity and Kirillov-Reshetikhin Modules |
| title_sort |
schur positivity and kirillov-reshetikhin modules |
| author |
Fourier, G. Hernandez, D. |
| author_facet |
Fourier, G. Hernandez, D. |
| publishDate |
2014 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146696 |
| fulltext |
|
| citation_txt |
Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT fourierg schurpositivityandkirillovreshetikhinmodules AT hernandezd schurpositivityandkirillovreshetikhinmodules |
| first_indexed |
2025-11-25T20:49:29Z |
| last_indexed |
2025-11-25T20:49:29Z |
| _version_ |
1850536740543004672 |