Schur Positivity and Kirillov-Reshetikhin Modules

In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of t...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автори: Fourier, G., Hernandez, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146696
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146696
record_format dspace
spelling Fourier, G.
Hernandez, D.
2019-02-10T19:08:25Z
2019-02-10T19:08:25Z
2014
Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B10; 17B37; 05E05
DOI:10.3842/SIGMA.2014.058
https://nasplib.isofts.kiev.ua/handle/123456789/146696
In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions.
This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Schur Positivity and Kirillov-Reshetikhin Modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Schur Positivity and Kirillov-Reshetikhin Modules
spellingShingle Schur Positivity and Kirillov-Reshetikhin Modules
Fourier, G.
Hernandez, D.
title_short Schur Positivity and Kirillov-Reshetikhin Modules
title_full Schur Positivity and Kirillov-Reshetikhin Modules
title_fullStr Schur Positivity and Kirillov-Reshetikhin Modules
title_full_unstemmed Schur Positivity and Kirillov-Reshetikhin Modules
title_sort schur positivity and kirillov-reshetikhin modules
author Fourier, G.
Hernandez, D.
author_facet Fourier, G.
Hernandez, D.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146696
fulltext
citation_txt Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT fourierg schurpositivityandkirillovreshetikhinmodules
AT hernandezd schurpositivityandkirillovreshetikhinmodules
first_indexed 2025-11-25T20:49:29Z
last_indexed 2025-11-25T20:49:29Z
_version_ 1850536740543004672