The Classification of All Crossed Products H₄#k[Cn]

Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of H₄ by k[Cn], where Cn is the cyclic group of order n and H₄ is Sweedler's 4-dimensional Hopf algebra. Equivalently,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
Hauptverfasser: Agore, A.L., Bontea, C.G., Militaru, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146697
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Classification of All Crossed Products H₄#k[Cn] / A.L. Agore, C.G. Bontea, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146697
record_format dspace
spelling Agore, A.L.
Bontea, C.G.
Militaru, G.
2019-02-10T19:10:07Z
2019-02-10T19:10:07Z
2014
The Classification of All Crossed Products H₄#k[Cn] / A.L. Agore, C.G. Bontea, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 16T10; 16T05; 16S40
DOI:10.3842/SIGMA.2014.049
https://nasplib.isofts.kiev.ua/handle/123456789/146697
Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of H₄ by k[Cn], where Cn is the cyclic group of order n and H₄ is Sweedler's 4-dimensional Hopf algebra. Equivalently, we classify all crossed products of Hopf algebras H₄#k[Cn] by explicitly computing two classifying objects: the cohomological 'group' H²(k[Cn],H₄) and CRP(k[Cn],H₄):= the set of types of isomorphisms of all crossed products H₄#k[Cn]. More precisely, all crossed products H₄#k[Cn] are described by generators and relations and classified: they are 4n-dimensional quantum groups H₄n,λ,t, parameterized by the set of all pairs (λ,t) consisting of an arbitrary unitary map t:Cn→C₂ and an n-th root λ of ±1. As an application, the group of Hopf algebra automorphisms of H₄n,λ,t is explicitly described.
This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. The authors would like to thank the referees for their comments and suggestions that substantially improved the first version of this paper. A.L. Agore is research fellow ‘Aspirant’ of FWO-Vlaanderen. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, grant no. 88/05.10.2011.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Classification of All Crossed Products H₄#k[Cn]
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Classification of All Crossed Products H₄#k[Cn]
spellingShingle The Classification of All Crossed Products H₄#k[Cn]
Agore, A.L.
Bontea, C.G.
Militaru, G.
title_short The Classification of All Crossed Products H₄#k[Cn]
title_full The Classification of All Crossed Products H₄#k[Cn]
title_fullStr The Classification of All Crossed Products H₄#k[Cn]
title_full_unstemmed The Classification of All Crossed Products H₄#k[Cn]
title_sort classification of all crossed products h₄#k[cn]
author Agore, A.L.
Bontea, C.G.
Militaru, G.
author_facet Agore, A.L.
Bontea, C.G.
Militaru, G.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of H₄ by k[Cn], where Cn is the cyclic group of order n and H₄ is Sweedler's 4-dimensional Hopf algebra. Equivalently, we classify all crossed products of Hopf algebras H₄#k[Cn] by explicitly computing two classifying objects: the cohomological 'group' H²(k[Cn],H₄) and CRP(k[Cn],H₄):= the set of types of isomorphisms of all crossed products H₄#k[Cn]. More precisely, all crossed products H₄#k[Cn] are described by generators and relations and classified: they are 4n-dimensional quantum groups H₄n,λ,t, parameterized by the set of all pairs (λ,t) consisting of an arbitrary unitary map t:Cn→C₂ and an n-th root λ of ±1. As an application, the group of Hopf algebra automorphisms of H₄n,λ,t is explicitly described.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146697
citation_txt The Classification of All Crossed Products H₄#k[Cn] / A.L. Agore, C.G. Bontea, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT agoreal theclassificationofallcrossedproductsh4kcn
AT bonteacg theclassificationofallcrossedproductsh4kcn
AT militarug theclassificationofallcrossedproductsh4kcn
AT agoreal classificationofallcrossedproductsh4kcn
AT bonteacg classificationofallcrossedproductsh4kcn
AT militarug classificationofallcrossedproductsh4kcn
first_indexed 2025-12-07T20:53:46Z
last_indexed 2025-12-07T20:53:46Z
_version_ 1850884307051085824