Bäcklund Transformations for the Kirchhoff Top

We construct Bäcklund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the sl(2) trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discretization of the system, inasmuch as they preserve bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
Hauptverfasser: Ragnisco, O., Zullo, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146705
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Bäcklund Transformations for the Kirchhoff Top / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146705
record_format dspace
spelling Ragnisco, O.
Zullo, F.
2019-02-10T19:41:45Z
2019-02-10T19:41:45Z
2011
Bäcklund Transformations for the Kirchhoff Top / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 13 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J35; 70H06; 70H15
DOI:10.3842/SIGMA.2011.001
https://nasplib.isofts.kiev.ua/handle/123456789/146705
We construct Bäcklund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the sl(2) trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discretization of the system, inasmuch as they preserve both its Poisson structure and its invariants. Moreover, in some special cases we are able to show that these maps can be explicitly integrated in terms of the initial conditions and of the ''iteration time'' n. Encouraged by these partial results we make the conjecture that the maps are interpolated by a specific one-parameter family of hamiltonian flows, and present the corresponding solution. We enclose a few pictures where the orbits of the continuous and of the discrete flow are depicted.
This paper is a contribution to the Proceedings of the Conference “Integrable Systems and Geometry” (August 12–17, 2010, Pondicherry University, Puducherry, India). The full collection is available at http://www.emis.de/journals/SIGMA/ISG2010.html. We are grateful to both referees for their constructive comments and criticisms, and in particular to one of them for his crucial remarks and for having brought to our attention the article [10]. The research underlying this paper has been partially supported by the Italian MIUR, Research Project “Integrable Nonlinear Evolutions, continuous and discrete: from Water Waves downwards to Symplectic Map”, Prot. n. 20082K9KXZ/005, in the framework of the PRIN 2008: “Geometrical Methods in the Theory of Nonlinear Waves and Applications”.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Bäcklund Transformations for the Kirchhoff Top
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Bäcklund Transformations for the Kirchhoff Top
spellingShingle Bäcklund Transformations for the Kirchhoff Top
Ragnisco, O.
Zullo, F.
title_short Bäcklund Transformations for the Kirchhoff Top
title_full Bäcklund Transformations for the Kirchhoff Top
title_fullStr Bäcklund Transformations for the Kirchhoff Top
title_full_unstemmed Bäcklund Transformations for the Kirchhoff Top
title_sort bäcklund transformations for the kirchhoff top
author Ragnisco, O.
Zullo, F.
author_facet Ragnisco, O.
Zullo, F.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct Bäcklund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the sl(2) trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discretization of the system, inasmuch as they preserve both its Poisson structure and its invariants. Moreover, in some special cases we are able to show that these maps can be explicitly integrated in terms of the initial conditions and of the ''iteration time'' n. Encouraged by these partial results we make the conjecture that the maps are interpolated by a specific one-parameter family of hamiltonian flows, and present the corresponding solution. We enclose a few pictures where the orbits of the continuous and of the discrete flow are depicted.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146705
citation_txt Bäcklund Transformations for the Kirchhoff Top / O. Ragnisco, F. Zullo // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT ragniscoo backlundtransformationsforthekirchhofftop
AT zullof backlundtransformationsforthekirchhofftop
first_indexed 2025-12-07T19:50:46Z
last_indexed 2025-12-07T19:50:46Z
_version_ 1850880343220944896