Singularity Analysis and Integrability of a Burgers-Type System of Foursov

We apply the Painlevé test for integrability of partial differential equations to a system of two coupled Burgers-type equations found by Foursov, which was recently shown by Sergyeyev to possess infinitely many commuting local generalized symmetries without any recursion operator. The Painlevé anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
1. Verfasser: Sakovich, S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146706
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Singularity Analysis and Integrability of a Burgers-Type System of Foursov / S. Sakovich // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146706
record_format dspace
spelling Sakovich, S.
2019-02-10T19:42:30Z
2019-02-10T19:42:30Z
2011
Singularity Analysis and Integrability of a Burgers-Type System of Foursov / S. Sakovich // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35K55; 37K10
DOI:10.3842/SIGMA.2011.002
https://nasplib.isofts.kiev.ua/handle/123456789/146706
We apply the Painlevé test for integrability of partial differential equations to a system of two coupled Burgers-type equations found by Foursov, which was recently shown by Sergyeyev to possess infinitely many commuting local generalized symmetries without any recursion operator. The Painlevé analysis easily detects that this is a typical C-integrable system in the Calogero sense and rediscovers its linearizing transformation.
This work was partially supported by the BRFFR grant Φ10-117. The author also thanks the Max Planck Institute for Mathematics for hospitality and support.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Singularity Analysis and Integrability of a Burgers-Type System of Foursov
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Singularity Analysis and Integrability of a Burgers-Type System of Foursov
spellingShingle Singularity Analysis and Integrability of a Burgers-Type System of Foursov
Sakovich, S.
title_short Singularity Analysis and Integrability of a Burgers-Type System of Foursov
title_full Singularity Analysis and Integrability of a Burgers-Type System of Foursov
title_fullStr Singularity Analysis and Integrability of a Burgers-Type System of Foursov
title_full_unstemmed Singularity Analysis and Integrability of a Burgers-Type System of Foursov
title_sort singularity analysis and integrability of a burgers-type system of foursov
author Sakovich, S.
author_facet Sakovich, S.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We apply the Painlevé test for integrability of partial differential equations to a system of two coupled Burgers-type equations found by Foursov, which was recently shown by Sergyeyev to possess infinitely many commuting local generalized symmetries without any recursion operator. The Painlevé analysis easily detects that this is a typical C-integrable system in the Calogero sense and rediscovers its linearizing transformation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146706
citation_txt Singularity Analysis and Integrability of a Burgers-Type System of Foursov / S. Sakovich // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT sakovichs singularityanalysisandintegrabilityofaburgerstypesystemoffoursov
first_indexed 2025-11-29T07:14:58Z
last_indexed 2025-11-29T07:14:58Z
_version_ 1850854632234942464