Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems
In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs) described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of G...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2011 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2011
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146777 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems / G. Najarbashi, Yu. Maleki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs) described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b† together with bz form a closed deformed algebra, i.e., SUq(2) with q=e2πi/3, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states.
|
|---|---|
| ISSN: | 1815-0659 |