Introduction to Sporadic Groups

This is an introduction to finite simple groups, in particular sporadic groups, intended for physicists. After a short review of group theory, we enumerate the 1+1+16=18 families of finite simple groups, as an introduction to the sporadic groups. These are described next, in three levels of increasi...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2011
Main Author: Boya, L.J.
Format: Article
Language:English
Published: Інститут математики НАН України 2011
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146797
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Introduction to Sporadic Groups / L.J. Boya // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 34 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:This is an introduction to finite simple groups, in particular sporadic groups, intended for physicists. After a short review of group theory, we enumerate the 1+1+16=18 families of finite simple groups, as an introduction to the sporadic groups. These are described next, in three levels of increasing complexity, plus the six isolated ''pariah'' groups. The (old) five Mathieu groups make up the first, smallest order level. The seven groups related to the Leech lattice, including the three Conway groups, constitute the second level. The third and highest level contains the Monster group M, plus seven other related groups. Next a brief mention is made of the remaining six pariah groups, thus completing the 5+7+8+6=26 sporadic groups. The review ends up with a brief discussion of a few of physical applications of finite groups in physics, including a couple of recent examples which use sporadic groups.
ISSN:1815-0659