Introduction to Sporadic Groups

This is an introduction to finite simple groups, in particular sporadic groups, intended for physicists. After a short review of group theory, we enumerate the 1+1+16=18 families of finite simple groups, as an introduction to the sporadic groups. These are described next, in three levels of increasi...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2011
Автор: Boya, L.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146797
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Introduction to Sporadic Groups / L.J. Boya // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 34 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146797
record_format dspace
spelling Boya, L.J.
2019-02-11T15:23:01Z
2019-02-11T15:23:01Z
2011
Introduction to Sporadic Groups / L.J. Boya // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 34 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20D08; 20F99
DOI:10.3842/SIGMA.2011.009
https://nasplib.isofts.kiev.ua/handle/123456789/146797
This is an introduction to finite simple groups, in particular sporadic groups, intended for physicists. After a short review of group theory, we enumerate the 1+1+16=18 families of finite simple groups, as an introduction to the sporadic groups. These are described next, in three levels of increasing complexity, plus the six isolated ''pariah'' groups. The (old) five Mathieu groups make up the first, smallest order level. The seven groups related to the Leech lattice, including the three Conway groups, constitute the second level. The third and highest level contains the Monster group M, plus seven other related groups. Next a brief mention is made of the remaining six pariah groups, thus completing the 5+7+8+6=26 sporadic groups. The review ends up with a brief discussion of a few of physical applications of finite groups in physics, including a couple of recent examples which use sporadic groups.
This paper is a contribution to the Proceedings of the Workshop “Supersymmetric Quantum Mechanics and Spectral Design” (July 18–30, 2010, Benasque, Spain). The full collection is available at http://www.emis.de/journals/SIGMA/SUSYQM2010.html. Work supported by grant A/9335/07 of the PCI-AECI and grant 2007-E24/2 of DGIID-DGA. The author thanks Professors A. Andrianov (Barcelona) and L.M. Nieto (Valladolid) for the opportunity to present the material as a Seminar in the Conference on Supersymmetric Quantum Mechanics.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Introduction to Sporadic Groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Introduction to Sporadic Groups
spellingShingle Introduction to Sporadic Groups
Boya, L.J.
title_short Introduction to Sporadic Groups
title_full Introduction to Sporadic Groups
title_fullStr Introduction to Sporadic Groups
title_full_unstemmed Introduction to Sporadic Groups
title_sort introduction to sporadic groups
author Boya, L.J.
author_facet Boya, L.J.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This is an introduction to finite simple groups, in particular sporadic groups, intended for physicists. After a short review of group theory, we enumerate the 1+1+16=18 families of finite simple groups, as an introduction to the sporadic groups. These are described next, in three levels of increasing complexity, plus the six isolated ''pariah'' groups. The (old) five Mathieu groups make up the first, smallest order level. The seven groups related to the Leech lattice, including the three Conway groups, constitute the second level. The third and highest level contains the Monster group M, plus seven other related groups. Next a brief mention is made of the remaining six pariah groups, thus completing the 5+7+8+6=26 sporadic groups. The review ends up with a brief discussion of a few of physical applications of finite groups in physics, including a couple of recent examples which use sporadic groups.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146797
citation_txt Introduction to Sporadic Groups / L.J. Boya // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 34 назв. — англ.
work_keys_str_mv AT boyalj introductiontosporadicgroups
first_indexed 2025-12-02T03:29:07Z
last_indexed 2025-12-02T03:29:07Z
_version_ 1850861424330407936