Twistor Theory of the Airy Equation

We demonstrate how the complex integral formula for the Airy functions arises from Penrose's twistor contour integral formula. We then use the Lax formulation of the isomonodromy problem with one irregular singularity of order four to show that the Airy equation arises from the anti-self-dualit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2014
Hauptverfasser: Cole, M., Dunajski, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146810
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Twistor Theory of the Airy Equation / M. Cole, M. Dunajski // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146810
record_format dspace
spelling Cole, M.
Dunajski, M.
2019-02-11T16:05:53Z
2019-02-11T16:05:53Z
2014
Twistor Theory of the Airy Equation / M. Cole, M. Dunajski // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 32L25; 34M56
DOI:10.3842/SIGMA.2014.037
https://nasplib.isofts.kiev.ua/handle/123456789/146810
We demonstrate how the complex integral formula for the Airy functions arises from Penrose's twistor contour integral formula. We then use the Lax formulation of the isomonodromy problem with one irregular singularity of order four to show that the Airy equation arises from the anti-self-duality equations for conformal structures of neutral signature invariant under the isometric action of the Bianchi II group. This conformal structure admits a null-Kähler metric in its conformal class which we construct explicitly.
This paper is a contribution to the Special Issue on Progress in Twistor Theory. The full collection is available at http://www.emis.de/journals/SIGMA/twistors.html. MC would like to thank James Bridgwater for the financial support.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Twistor Theory of the Airy Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Twistor Theory of the Airy Equation
spellingShingle Twistor Theory of the Airy Equation
Cole, M.
Dunajski, M.
title_short Twistor Theory of the Airy Equation
title_full Twistor Theory of the Airy Equation
title_fullStr Twistor Theory of the Airy Equation
title_full_unstemmed Twistor Theory of the Airy Equation
title_sort twistor theory of the airy equation
author Cole, M.
Dunajski, M.
author_facet Cole, M.
Dunajski, M.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We demonstrate how the complex integral formula for the Airy functions arises from Penrose's twistor contour integral formula. We then use the Lax formulation of the isomonodromy problem with one irregular singularity of order four to show that the Airy equation arises from the anti-self-duality equations for conformal structures of neutral signature invariant under the isometric action of the Bianchi II group. This conformal structure admits a null-Kähler metric in its conformal class which we construct explicitly.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146810
citation_txt Twistor Theory of the Airy Equation / M. Cole, M. Dunajski // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT colem twistortheoryoftheairyequation
AT dunajskim twistortheoryoftheairyequation
first_indexed 2025-12-07T20:03:19Z
last_indexed 2025-12-07T20:03:19Z
_version_ 1850881133167771648