A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between th...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2014 |
| Hauptverfasser: | Holweck, F., Saniga, M., Lévay, P. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146814 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The Veldkamp Space of Two-Qubits
von: Saniga, M., et al.
Veröffentlicht: (2007) -
'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon
von: Saniga, M., et al.
Veröffentlicht: (2012) -
Excitation of the collective states of qubits in a three-qubit system
von: Ya. S. Greenberg, et al.
Veröffentlicht: (2020) -
Construction of self-dual binary [2²ⁿ,2²ⁿ⁻¹,2ⁿ]-codes
von: Hannusch, C., et al.
Veröffentlicht: (2016) -
Bath dynamics in an exactly solvable qubit model with initial qubit-environment correlations
von: Ignatyuk, V.V., et al.
Veröffentlicht: (2013)