Symmetry Groups of An Hypergeometric Series

Structures of symmetries of transformations for Holman-Biedenharn-Louck An hypergeometric series: An terminating balanced ₄F₃ series and An elliptic ₁₀E₉ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of An...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автор: Kajihara, Y.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146815
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetry Groups of An Hypergeometric Series / Y. Kajihara // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146815
record_format dspace
spelling Kajihara, Y.
2019-02-11T16:17:42Z
2019-02-11T16:17:42Z
2014
Symmetry Groups of An Hypergeometric Series / Y. Kajihara // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 37 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C67; 20F55; 33C20; 33D67
DOI:10.3842/SIGMA.2014.026
https://nasplib.isofts.kiev.ua/handle/123456789/146815
Structures of symmetries of transformations for Holman-Biedenharn-Louck An hypergeometric series: An terminating balanced ₄F₃ series and An elliptic ₁₀E₉ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of An hypergeometric series are given. Among them, a ''periodic'' affine Coxeter group which seems to be new in the literature arises as an invariance group for a class of An ₄F₃ series.
This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html. I would like to express my sincere thanks to Professors David Bessis, Christian Krattenthaler, Masato Okado and Hiroyuki Yamane and, in particular, Professor Kenji Iohara for crucial comments and fruitful discussions on some Coxeter groups that appear in this paper. I also thank to anonymous referees to pointing out the errors of the previous version of this paper and useful suggestions to improve the descriptions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Symmetry Groups of An Hypergeometric Series
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Symmetry Groups of An Hypergeometric Series
spellingShingle Symmetry Groups of An Hypergeometric Series
Kajihara, Y.
title_short Symmetry Groups of An Hypergeometric Series
title_full Symmetry Groups of An Hypergeometric Series
title_fullStr Symmetry Groups of An Hypergeometric Series
title_full_unstemmed Symmetry Groups of An Hypergeometric Series
title_sort symmetry groups of an hypergeometric series
author Kajihara, Y.
author_facet Kajihara, Y.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Structures of symmetries of transformations for Holman-Biedenharn-Louck An hypergeometric series: An terminating balanced ₄F₃ series and An elliptic ₁₀E₉ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of An hypergeometric series are given. Among them, a ''periodic'' affine Coxeter group which seems to be new in the literature arises as an invariance group for a class of An ₄F₃ series.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146815
citation_txt Symmetry Groups of An Hypergeometric Series / Y. Kajihara // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 37 назв. — англ.
work_keys_str_mv AT kajiharay symmetrygroupsofanhypergeometricseries
first_indexed 2025-12-07T15:16:58Z
last_indexed 2025-12-07T15:16:58Z
_version_ 1850863117958905857