Symmetry Groups of An Hypergeometric Series
Structures of symmetries of transformations for Holman-Biedenharn-Louck An hypergeometric series: An terminating balanced ₄F₃ series and An elliptic ₁₀E₉ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of An...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2014 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146815 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Symmetry Groups of An Hypergeometric Series / Y. Kajihara // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 37 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146815 |
|---|---|
| record_format |
dspace |
| spelling |
Kajihara, Y. 2019-02-11T16:17:42Z 2019-02-11T16:17:42Z 2014 Symmetry Groups of An Hypergeometric Series / Y. Kajihara // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 37 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C67; 20F55; 33C20; 33D67 DOI:10.3842/SIGMA.2014.026 https://nasplib.isofts.kiev.ua/handle/123456789/146815 Structures of symmetries of transformations for Holman-Biedenharn-Louck An hypergeometric series: An terminating balanced ₄F₃ series and An elliptic ₁₀E₉ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of An hypergeometric series are given. Among them, a ''periodic'' affine Coxeter group which seems to be new in the literature arises as an invariance group for a class of An ₄F₃ series. This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html. I would like to express my sincere thanks to Professors David Bessis, Christian Krattenthaler, Masato Okado and Hiroyuki Yamane and, in particular, Professor Kenji Iohara for crucial comments and fruitful discussions on some Coxeter groups that appear in this paper. I also thank to anonymous referees to pointing out the errors of the previous version of this paper and useful suggestions to improve the descriptions. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Symmetry Groups of An Hypergeometric Series Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Symmetry Groups of An Hypergeometric Series |
| spellingShingle |
Symmetry Groups of An Hypergeometric Series Kajihara, Y. |
| title_short |
Symmetry Groups of An Hypergeometric Series |
| title_full |
Symmetry Groups of An Hypergeometric Series |
| title_fullStr |
Symmetry Groups of An Hypergeometric Series |
| title_full_unstemmed |
Symmetry Groups of An Hypergeometric Series |
| title_sort |
symmetry groups of an hypergeometric series |
| author |
Kajihara, Y. |
| author_facet |
Kajihara, Y. |
| publishDate |
2014 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
Structures of symmetries of transformations for Holman-Biedenharn-Louck An hypergeometric series: An terminating balanced ₄F₃ series and An elliptic ₁₀E₉ series are discussed. Namely the description of the invariance groups and the classification all of possible transformations for each types of An hypergeometric series are given. Among them, a ''periodic'' affine Coxeter group which seems to be new in the literature arises as an invariance group for a class of An ₄F₃ series.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146815 |
| citation_txt |
Symmetry Groups of An Hypergeometric Series / Y. Kajihara // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 37 назв. — англ. |
| work_keys_str_mv |
AT kajiharay symmetrygroupsofanhypergeometricseries |
| first_indexed |
2025-12-07T15:16:58Z |
| last_indexed |
2025-12-07T15:16:58Z |
| _version_ |
1850863117958905857 |