Fusion Procedure for Cyclotomic Hecke Algebras

A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2014
Main Authors: Ogievetsky, O.V., Loïc Poulain d'Andecy
Format: Article
Language:English
Published: Інститут математики НАН України 2014
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/146821
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Fusion Procedure for Cyclotomic Hecke Algebras / O.V. Ogievetsky, Loïc Poulain d'Andecy // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146821
record_format dspace
spelling Ogievetsky, O.V.
Loïc Poulain d'Andecy
2019-02-11T16:23:28Z
2019-02-11T16:23:28Z
2014
Fusion Procedure for Cyclotomic Hecke Algebras / O.V. Ogievetsky, Loïc Poulain d'Andecy // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20C08; 05E10
DOI:10.3842/SIGMA.2014.039
https://nasplib.isofts.kiev.ua/handle/123456789/146821
A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of the multi-tableau and is proportional to the inverse of the corresponding Schur element.
This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html. We thank the anonymous referees for valuable suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Fusion Procedure for Cyclotomic Hecke Algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Fusion Procedure for Cyclotomic Hecke Algebras
spellingShingle Fusion Procedure for Cyclotomic Hecke Algebras
Ogievetsky, O.V.
Loïc Poulain d'Andecy
title_short Fusion Procedure for Cyclotomic Hecke Algebras
title_full Fusion Procedure for Cyclotomic Hecke Algebras
title_fullStr Fusion Procedure for Cyclotomic Hecke Algebras
title_full_unstemmed Fusion Procedure for Cyclotomic Hecke Algebras
title_sort fusion procedure for cyclotomic hecke algebras
author Ogievetsky, O.V.
Loïc Poulain d'Andecy
author_facet Ogievetsky, O.V.
Loïc Poulain d'Andecy
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of the multi-tableau and is proportional to the inverse of the corresponding Schur element.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146821
citation_txt Fusion Procedure for Cyclotomic Hecke Algebras / O.V. Ogievetsky, Loïc Poulain d'Andecy // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ.
work_keys_str_mv AT ogievetskyov fusionprocedureforcyclotomicheckealgebras
AT loicpoulaindandecy fusionprocedureforcyclotomicheckealgebras
first_indexed 2025-12-07T20:08:05Z
last_indexed 2025-12-07T20:08:05Z
_version_ 1850881432770052096