Nontrivial Deformation of a Trivial Bundle
The SU(2)-prolongation of the Hopf fibration S³→S² is a trivializable principal SU(2)-bundle. We present a noncommutative deformation of this bundle to a quantum principal SUq(2)-bundle that is not trivializable. On the other hand, we show that the SUq(2)-bundle is piecewise trivializable with respe...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2014 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146823 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Nontrivial Deformation of a Trivial Bundle / P.M. Hajac, B. Zieliński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | The SU(2)-prolongation of the Hopf fibration S³→S² is a trivializable principal SU(2)-bundle. We present a noncommutative deformation of this bundle to a quantum principal SUq(2)-bundle that is not trivializable. On the other hand, we show that the SUq(2)-bundle is piecewise trivializable with respect to the closed covering of S² by two hemispheres intersecting at the equator.
|
|---|---|
| ISSN: | 1815-0659 |