M-Theory with Framed Corners and Tertiary Index Invariants
The study of the partition function in M-theory involves the use of index theory on a twelve-dimensional bounding manifold. In eleven dimensions, viewed as a boundary, this is given by secondary index invariants such as the Atiyah-Patodi-Singer eta-invariant, the Chern-Simons invariant, or the Adams...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2014 |
| 1. Verfasser: | Sati, H. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146824 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | M-Theory with Framed Corners and Tertiary Index Invariants / H. Sati // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 87 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
General Boundary Formulation for n-Dimensional Classical Abelian Theory with Corners
von: Díaz-Marín, H.G.
Veröffentlicht: (2015) -
A Euclidean Geometric Invariant of Framed (Un)Knots in Manifolds
von: Dubois, J., et al.
Veröffentlicht: (2010) -
Scientific and educational activities of tertiary institutions in terms of international indicators
von: O. P. Kochetkova, et al.
Veröffentlicht: (2016) -
Local properties of entire functions of bounded index in a frame
von: A. I. Bandura, et al.
Veröffentlicht: (2022) -
New frame of constant development theory
von: M. Tsapovska
Veröffentlicht: (2014)