Tilting Modules in Truncated Categories

We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автори: Bennett, M., Bianchi, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146827
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Tilting Modules in Truncated Categories / M. Bennett, A. Bianchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146827
record_format dspace
spelling Bennett, M.
Bianchi, A.
2019-02-11T16:36:11Z
2019-02-11T16:36:11Z
2014
Tilting Modules in Truncated Categories / M. Bennett, A. Bianchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B70; 17B65; 17B10; 17B55
DOI:10.3842/SIGMA.2014.030
https://nasplib.isofts.kiev.ua/handle/123456789/146827
We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this to put a tilting theory on the category G(Γ′) where Γ′=P′×J, where P′⊆P+ is saturated. Under certain natural conditions on Γ′, we note that G(Γ′) admits full tilting modules.
This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html. The authors are grateful for the stimulating discussions with Professor Adriano Moura as well as the hospitality of the Institute of Mathematics of the State University of Campinas where most of this work was completed. We thank the anonymous referees for their significant contributions towards improving the exposition of this paper. This work was partially supported by FAPESP grants 2012/06923-0 (M. Bennett) and 2011/22322-4 (A. Bianchi).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Tilting Modules in Truncated Categories
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Tilting Modules in Truncated Categories
spellingShingle Tilting Modules in Truncated Categories
Bennett, M.
Bianchi, A.
title_short Tilting Modules in Truncated Categories
title_full Tilting Modules in Truncated Categories
title_fullStr Tilting Modules in Truncated Categories
title_full_unstemmed Tilting Modules in Truncated Categories
title_sort tilting modules in truncated categories
author Bennett, M.
Bianchi, A.
author_facet Bennett, M.
Bianchi, A.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this to put a tilting theory on the category G(Γ′) where Γ′=P′×J, where P′⊆P+ is saturated. Under certain natural conditions on Γ′, we note that G(Γ′) admits full tilting modules.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146827
citation_txt Tilting Modules in Truncated Categories / M. Bennett, A. Bianchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT bennettm tiltingmodulesintruncatedcategories
AT bianchia tiltingmodulesintruncatedcategories
first_indexed 2025-12-07T20:50:23Z
last_indexed 2025-12-07T20:50:23Z
_version_ 1850884093930110976