Tilting Modules in Truncated Categories
We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2014 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2014
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146827 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Tilting Modules in Truncated Categories / M. Bennett, A. Bianchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146827 |
|---|---|
| record_format |
dspace |
| spelling |
Bennett, M. Bianchi, A. 2019-02-11T16:36:11Z 2019-02-11T16:36:11Z 2014 Tilting Modules in Truncated Categories / M. Bennett, A. Bianchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B70; 17B65; 17B10; 17B55 DOI:10.3842/SIGMA.2014.030 https://nasplib.isofts.kiev.ua/handle/123456789/146827 We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this to put a tilting theory on the category G(Γ′) where Γ′=P′×J, where P′⊆P+ is saturated. Under certain natural conditions on Γ′, we note that G(Γ′) admits full tilting modules. This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html. The authors are grateful for the stimulating discussions with Professor Adriano Moura as well as the hospitality of the Institute of Mathematics of the State University of Campinas where most of this work was completed. We thank the anonymous referees for their significant contributions towards improving the exposition of this paper. This work was partially supported by FAPESP grants 2012/06923-0 (M. Bennett) and 2011/22322-4 (A. Bianchi). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Tilting Modules in Truncated Categories Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Tilting Modules in Truncated Categories |
| spellingShingle |
Tilting Modules in Truncated Categories Bennett, M. Bianchi, A. |
| title_short |
Tilting Modules in Truncated Categories |
| title_full |
Tilting Modules in Truncated Categories |
| title_fullStr |
Tilting Modules in Truncated Categories |
| title_full_unstemmed |
Tilting Modules in Truncated Categories |
| title_sort |
tilting modules in truncated categories |
| author |
Bennett, M. Bianchi, A. |
| author_facet |
Bennett, M. Bianchi, A. |
| publishDate |
2014 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this to put a tilting theory on the category G(Γ′) where Γ′=P′×J, where P′⊆P+ is saturated. Under certain natural conditions on Γ′, we note that G(Γ′) admits full tilting modules.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146827 |
| citation_txt |
Tilting Modules in Truncated Categories / M. Bennett, A. Bianchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. |
| work_keys_str_mv |
AT bennettm tiltingmodulesintruncatedcategories AT bianchia tiltingmodulesintruncatedcategories |
| first_indexed |
2025-12-07T20:50:23Z |
| last_indexed |
2025-12-07T20:50:23Z |
| _version_ |
1850884093930110976 |