Second Order Symmetries of the Conformal Laplacian
Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisf...
Gespeichert in:
| Datum: | 2014 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2014
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146838 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three. |
|---|