The Heisenberg Relation - Mathematical Formulations
We study some of the possibilities for formulating the Heisenberg relation of quantum mechanics in mathematical terms. In particular, we examine the framework discussed by Murray and von Neumann, the family (algebra) of operators affiliated with a finite factor (of infinite linear dimension).
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2014 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2014
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146846 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | The Heisenberg Relation - Mathematical Formulations / R.V. Kadison, Z. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146846 |
|---|---|
| record_format |
dspace |
| spelling |
Kadison, R.V. Liu, Z. 2019-02-11T17:08:54Z 2019-02-11T17:08:54Z 2014 The Heisenberg Relation - Mathematical Formulations / R.V. Kadison, Z. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 26 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 47L60; 47L90; 46L57; 81S99 DOI:10.3842/SIGMA.2014.09 https://nasplib.isofts.kiev.ua/handle/123456789/146846 We study some of the possibilities for formulating the Heisenberg relation of quantum mechanics in mathematical terms. In particular, we examine the framework discussed by Murray and von Neumann, the family (algebra) of operators affiliated with a finite factor (of infinite linear dimension). This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rief fel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications The Heisenberg Relation - Mathematical Formulations Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The Heisenberg Relation - Mathematical Formulations |
| spellingShingle |
The Heisenberg Relation - Mathematical Formulations Kadison, R.V. Liu, Z. |
| title_short |
The Heisenberg Relation - Mathematical Formulations |
| title_full |
The Heisenberg Relation - Mathematical Formulations |
| title_fullStr |
The Heisenberg Relation - Mathematical Formulations |
| title_full_unstemmed |
The Heisenberg Relation - Mathematical Formulations |
| title_sort |
heisenberg relation - mathematical formulations |
| author |
Kadison, R.V. Liu, Z. |
| author_facet |
Kadison, R.V. Liu, Z. |
| publishDate |
2014 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We study some of the possibilities for formulating the Heisenberg relation of quantum mechanics in mathematical terms. In particular, we examine the framework discussed by Murray and von Neumann, the family (algebra) of operators affiliated with a finite factor (of infinite linear dimension).
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146846 |
| citation_txt |
The Heisenberg Relation - Mathematical Formulations / R.V. Kadison, Z. Liu // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 26 назв. — англ. |
| work_keys_str_mv |
AT kadisonrv theheisenbergrelationmathematicalformulations AT liuz theheisenbergrelationmathematicalformulations AT kadisonrv heisenbergrelationmathematicalformulations AT liuz heisenbergrelationmathematicalformulations |
| first_indexed |
2025-12-07T17:00:19Z |
| last_indexed |
2025-12-07T17:00:19Z |
| _version_ |
1850869619643908096 |