Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation

We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlev...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2014
Автор: Ormerod, C.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146850
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146850
record_format dspace
spelling Ormerod, C.M.
2019-02-11T17:11:42Z
2019-02-11T17:11:42Z
2014
Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ.
DOI:10.3842/SIGMA.2014.002
1815-0659
2010 Mathematics Subject Classification: 39A10; 37K15; 33C05
https://nasplib.isofts.kiev.ua/handle/123456789/146850
We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.
This paper is a contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa. The full collection is available at http://www.emis.de/journals/SIGMA/InfiniteAnalysis2013.html. This research is supported by Australian Research Council Discovery Grant #DP110100077.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
spellingShingle Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
Ormerod, C.M.
title_short Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_full Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_fullStr Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_full_unstemmed Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_sort symmetries and special solutions of reductions of the lattice potential kdv equation
author Ormerod, C.M.
author_facet Ormerod, C.M.
publishDate 2014
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.
isbn DOI:10.3842/SIGMA.2014.002
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146850
citation_txt Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ.
work_keys_str_mv AT ormerodcm symmetriesandspecialsolutionsofreductionsofthelatticepotentialkdvequation
first_indexed 2025-12-02T02:22:54Z
last_indexed 2025-12-02T02:22:54Z
_version_ 1850861354828693504